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Tensors

A tensor is a collection of elements
§ its dimensions define the size of the collection
§ its order is the number of different dimensions
§ specifying an index along each tensor mode defines

an element of the tensor

A few examples of tensors are
§ Order 0 tensors are scalars, e.g., s P R
§ Order 1 tensors are vectors, e.g., v P Rn

§ Order 2 tensors are matrices, e.g., A P Rmˆn

§ An order 3 tensor with dimensions s1 ˆ s2 ˆ s3 is denoted as T P Rs1ˆs2ˆs3

with elements tijk for i P t1, . . . , s1u, j P t1, . . . , s2u, k P t1, . . . , s3u



Reshaping Tensors

Its often helpful to use alternative views of the same collection of elements
§ Folding a tensor yields a higher-order tensor with the same elements
§ Unfolding a tensor yields a lower-order tensor with the same elements
§ In linear algebra, we have the unfolding v “ vecpAq, which stacks the

columns of A P Rmˆn to produce v P Rmn

§ For a tensor T P Rs1ˆs2ˆs3 , v “ vecpT q gives v P Rs1s2s3 with

vi`pj´1qs1`pk´1qs1s2 “ tijk

§ A common set of unfoldings is given by matricizations of a tensor, e.g., for
order 3,

Tp1q P Rs1ˆs2s3 ,Tp2q P Rs2ˆs1s3 , and Tp3q P Rs3ˆs1s2



Matrices and Tensors as Operators and Multilinear Forms

§ What is a matrix?
§ A collection of numbers arranged into an array of dimensions m ˆ n, e.g.,

M P Rmˆn

§ A linear operator fM pxq “ Mx

§ A bilinear form xTMy

§ What is a tensor?
§ A collection of numbers arranged into an array of a particular order, with

dimensions l ˆ m ˆ n ˆ ¨ ¨ ¨ , e.g., T P Rlˆmˆn is order 3
§ A multilinear operator z “ fT px,yq

zi “
ÿ

j,k

tijkxjyk

§ A multilinear form
ř

i,j,k tijkxiyjzk



Tensor Transposition

For tensors of order ě 3, there is more than one way to transpose modes

§ A tensor transposition is defined by a permutation p containing elements
t1, . . . , du

yip1 ,...,ipd “ xi1,...,id

§ In this notation, a transposition AT of matrix A is defined by p “ r2, 1s so
that

bi2i1 “ ai1i2

§ Tensor transposition is a convenient primitive for manipulating
multidimensional arrays and mapping tensor computations to linear algebra

§ When elementwise expressions are used in tensor algebra, indices are often
carried through to avoid transpositions



Tensor Symmetry

We say a tensor is symmetric if @j, k P t1, . . . , du

ti1...ij ...ik...id “ ti1...ik...ij ...id

A tensor is antisymmetric (skew-symmetric) if @j, k P t1, . . . , du

ti1...ij ...ik...id “ p´1qti1...ik...ij ...id

A tensor is partially-symmetric if such index interchanges are restricted to be
within disjoint subsets of t1, . . . , du, e.g., if the subsets for d “ 4 and t1, 2u and
t3, 4u, then

tijkl “ tjikl “ tjilk “ tijlk



Tensor Sparsity
We say a tensor T is diagonal if for some v,

ti1,...,id “

#

vi1 : i1 “ ¨ ¨ ¨ “ id

0 : otherwise
“ vi1δi1i2δi2i3 ¨ ¨ ¨ δid´1id

§ In the literature, such tensors are sometimes also referred to as
‘superdiagonal’

§ Generalizes diagonal matrix
§ A diagonal tensor is symmetric (and not antisymmetric)

If most of the tensor entries are zeros, the tensor is sparse
§ Generalizes notion of sparse matrices
§ Sparsity enables computational and memory savings
§ We will consider data structures and algorithms for sparse tensor operations

later in the course



Tensor Products and Kronecker Products
Tensor products can be defined with respect to maps f : Vf Ñ Wf and
g : Vg Ñ Wg

Tensors can be used to represent multilinear maps and have a corresponding
definition for a tensor product

The Kronecker product between two matrices A P Rm1ˆm2 , B P Rn1ˆn2



Properties of Einstein Summation Expressions
Given an elementwise expression containing a product of tensors, the operands
commute

A contraction can be succinctly described by a tensor diagram



Tensor Contractions
A tensor contraction multiplies elements of two tensors and computes partial
sums to produce a third, in a fashion expressible by pairing up modes of different
tensors, defining einsum (term stems from Einstein’s summation convention)

tensor contraction einsum diagram
inner product
outer product

pointwise product
Hadamard product

matrix multiplication
batched mat.-mul.

tensor times matrix
The terms ‘contraction’ and ‘einsum’ are also often used when more than two
operands are involved



General Tensor Contractions
Given tensor U of order s ` v and V of order v ` t, a tensor contraction summing
over v modes can be written as

Unfolding the tensors reduces the tensor contraction to matrix multiplication



Matrix-style Notation for Tensor Contractions
The tensor times matrix contraction along the mth mode of U to produce V is
expressed as follows

The Khatri-Rao product of two matrices U P Rmˆk and V P Rnˆk products
W P Rmnˆk so that



Identities with Kronecker and Khatri-Rao Products
§ Matrix multiplication is distributive over the Kronecker product

§ For the Khatri-Rao product a similar distributive identity is



Multilinear Tensor Operations
Given an order d tensor T , define multilinear function xp1q “ f pT qpxp2q, . . . ,xpdqq



Batched Multilinear Operations
The multilinear map f pT q is frequently used in tensor computations



Tensor Norm and Conditioning of Multilinear Functions
We can define elementwise and operator norms for a tensor T



Conditioning of Multilinear Functions
Evaluation of the multilinear map is typically ill-posed for worst case inputs



Well-conditioned Tensors
For equidimensional tensors (all modes of same size), some small ideally
conditioned tensors exist



Ill-conditioned Tensors
For n R t2, 4, 8u given any T P Rnˆnˆn, infx,yPSn´1 }f pT qpx,yq}2 “ 0



Algebras as Tensors
§ A third order tensor can be used to describe an algebra

§ The Hurwitz problem also gives result concerning existance of compositional
algebras and division algebras



CP Decomposition
§ The canonical polyadic or CANDECOMP/PARAFAC (CP) decomposition

expresses an order d tensor in terms of d factor matrices



CP Decomposition Basics
§ The CP decomposition is useful in a variety of contexts

§ Basic properties and methods



Tucker Decomposition
§ The Tucker decomposition expresses an order d tensor via a smaller order d

core tensor and d factor matrices



Tucker Decomposition Basics
§ The Tucker decomposition is used in many of the same contexts as CP

§ Basic properties and methods



Tensor Train Decomposition
§ The tensor train decomposition expresses an order d tensor as a chain of

products of order 2 or order 3 tensors



Tensor Train Decomposition Basics
§ Tensor train has applications in quantum simulation and in numerical PDEs

§ Basic properties and methods



Summary of Tensor Decomposition Basics

We can compare the aforementioned decomposition for an order d tensor with all
dimensions equal to n and all decomposition ranks equal to R

decomposition CP Tucker tensor train
size

uniqueness
orthogonalizability

exact decomposition
approximation
typical method


