CS 598 EVS: Tensor Computations Basics of Tensor Computations

Edgar Solomonik

University of Illinois, Urbana-Champaign

Tensors

A *tensor* is a collection of elements

- its dimensions define the size of the collection
- its order is the number of different dimensions
- specifying an index along each tensor mode defines an element of the tensor
- A few examples of tensors are
 - Order 0 tensors are scalars, e.g., $s \in \mathbb{R}$
 - Order 1 tensors are vectors, e.g., $\boldsymbol{v} \in \mathbb{R}^n$
 - Order 2 tensors are matrices, e.g., $\boldsymbol{A} \in \mathbb{R}^{m \times n}$
 - An order 3 tensor with dimensions $s_1 \times s_2 \times s_3$ is denoted as $\mathcal{T} \in \mathbb{R}^{s_1 \times s_2 \times s_3}$ with elements t_{ijk} for $i \in \{1, \ldots, s_1\}, j \in \{1, \ldots, s_2\}, k \in \{1, \ldots, s_3\}$

Reshaping Tensors

Its often helpful to use alternative views of the same collection of elements

- Folding a tensor yields a higher-order tensor with the same elements
- Unfolding a tensor yields a lower-order tensor with the same elements
- ▶ In linear algebra, we have the unfolding v = vec(A), which stacks the columns of $A \in \mathbb{R}^{m \times n}$ to produce $v \in \mathbb{R}^{mn}$
- ▶ For a tensor $\mathcal{T} \in \mathbb{R}^{s_1 imes s_2 imes s_3}$, $v = \mathsf{vec}(\mathcal{T})$ gives $v \in \mathbb{R}^{s_1 s_2 s_3}$ with

$$v_{i+(j-1)s_1+(k-1)s_1s_2} = t_{ijk}$$

 A common set of unfoldings is given by matricizations of a tensor, e.g., for order 3,

$$oldsymbol{T}_{(1)} \in \mathbb{R}^{s_1 imes s_2 s_3}, oldsymbol{T}_{(2)} \in \mathbb{R}^{s_2 imes s_1 s_3}, ext{ and } oldsymbol{T}_{(3)} \in \mathbb{R}^{s_3 imes s_1 s_2}$$

Matrices and Tensors as Operators and Multilinear Forms

- What is a matrix?
 - \blacktriangleright A collection of numbers arranged into an array of dimensions $m\times n,$ e.g., $\pmb{M}\in\mathbb{R}^{m\times n}$
 - A linear operator $f_M(x) = Mx$
 - A bilinear form $x^T M y$
- What is a tensor?
 - A collection of numbers arranged into an array of a particular order, with dimensions $l \times m \times n \times \cdots$, e.g., $T \in \mathbb{R}^{l \times m \times n}$ is order 3
 - A multilinear operator $m{z} = m{f}_{\mathcal{T}}(m{x},m{y})$

$$z_i = \sum_{j,k} t_{ijk} x_j y_k$$

• A multilinear form $\sum_{i,j,k} t_{ijk} x_i y_j z_k$

Tensor Transposition

For tensors of order ≥ 3 , there is more than one way to transpose modes

A tensor transposition is defined by a permutation p containing elements {1,...,d}

$$y_{i_{p_1},\dots,i_{p_d}} = x_{i_1,\dots,i_d}$$

• In this notation, a transposition A^T of matrix A is defined by p = [2, 1] so that

$$b_{i_2i_1} = a_{i_1i_2}$$

- Tensor transposition is a convenient primitive for manipulating multidimensional arrays and mapping tensor computations to linear algebra
- When elementwise expressions are used in tensor algebra, indices are often carried through to avoid transpositions

Tensor Symmetry

We say a tensor is *symmetric* if $\forall j, k \in \{1, \dots, d\}$

 $t_{i_1\dots i_j\dots i_k\dots i_d} = t_{i_1\dots i_k\dots i_j\dots i_d}$

A tensor is *antisymmetric* (skew-symmetric) if $\forall j, k \in \{1, \dots, d\}$

$$t_{i_1\dots i_j\dots i_k\dots i_d} = (-1)t_{i_1\dots i_k\dots i_j\dots i_d}$$

A tensor is *partially-symmetric* if such index interchanges are restricted to be within disjoint subsets of $\{1, \ldots, d\}$, e.g., if the subsets for d = 4 and $\{1, 2\}$ and $\{3, 4\}$, then

$$t_{ijkl} = t_{jikl} = t_{jilk} = t_{ijlk}$$

Tensor Sparsity

We say a tensor \mathcal{T} is *diagonal* if for some v,

$$t_{i_1,\dots,i_d} = \begin{cases} v_{i_1} & : i_1 = \dots = i_d \\ 0 & : \text{otherwise} \end{cases} = v_{i_1} \delta_{i_1 i_2} \delta_{i_2 i_3} \cdots \delta_{i_{d-1} i_d}$$

- In the literature, such tensors are sometimes also referred to as 'superdiagonal'
- Generalizes diagonal matrix
- A diagonal tensor is symmetric (and not antisymmetric)

If most of the tensor entries are zeros, the tensor is *sparse*

- Generalizes notion of sparse matrices
- Sparsity enables computational and memory savings
- We will consider data structures and algorithms for sparse tensor operations later in the course

Tensor Products and Kronecker Products

Tensor products can be defined with respect to maps $f: V_f \to W_f$ and $g: V_g \to W_g$

Tensors can be used to represent multilinear maps and have a corresponding definition for a tensor product

The *Kronecker product* between two matrices $A \in \mathbb{R}^{m_1 \times m_2}$, $B \in \mathbb{R}^{n_1 \times n_2}$

Properties of Einstein Summation Expressions

Given an elementwise expression containing a product of tensors, the operands commute

A contraction can be succinctly described by a *tensor diagram*

Tensor Contractions

A *tensor contraction* multiplies elements of two tensors and computes partial sums to produce a third, in a fashion expressible by pairing up modes of different tensors, defining *einsum* (term stems from Einstein's summation convention)

tensor contraction	einsum	diagram
inner product		
outer product		
pointwise product		
Hadamard product		
matrix multiplication		
batched matmul.		
tensor times matrix		

The terms 'contraction' and 'einsum' are also often used when more than two operands are involved

General Tensor Contractions

Given tensor \mathcal{U} of order s + v and \mathcal{V} of order v + t, a tensor contraction summing over v modes can be written as

Unfolding the tensors reduces the tensor contraction to matrix multiplication

Matrix-style Notation for Tensor Contractions

The *tensor times matrix* contraction along the *m*th mode of \mathcal{U} to produce \mathcal{V} is expressed as follows

The *Khatri-Rao product* of two matrices $U \in \mathbb{R}^{m \times k}$ and $V \in \mathbb{R}^{n \times k}$ products $W \in \mathbb{R}^{mn \times k}$ so that

Identities with Kronecker and Khatri-Rao Products

Matrix multiplication is distributive over the Kronecker product

For the Khatri-Rao product a similar distributive identity is

Multilinear Tensor Operations

Given an order d tensor T, define multilinear function $x^{(1)} = f^{(T)}(x^{(2)}, \dots, x^{(d)})$

Batched Multilinear Operations

The multilinear map $f^{(\mathcal{T})}$ is frequently used in tensor computations

Tensor Norm and Conditioning of Multilinear Functions

We can define elementwise and operator norms for a tensor $\boldsymbol{\mathcal{T}}$

Conditioning of Multilinear Functions

Evaluation of the multilinear map is typically ill-posed for worst case inputs

Well-conditioned Tensors

For equidimensional tensors (all modes of same size), some small ideally conditioned tensors exist

Ill-conditioned Tensors

For
$$n \notin \{2, 4, 8\}$$
 given any $\mathcal{T} \in \mathbb{R}^{n \times n \times n}$, $\inf_{x, y \in \mathbb{S}^{n-1}} \| f^{(\mathcal{T})}(x, y) \|_2 = 0$

Algebras as Tensors

A third order tensor can be used to describe an algebra

 The Hurwitz problem also gives result concerning existance of compositional algebras and division algebras

CP Decomposition

The canonical polyadic or CANDECOMP/PARAFAC (CP) decomposition expresses an order d tensor in terms of d factor matrices

CP Decomposition Basics

The CP decomposition is useful in a variety of contexts

Basic properties and methods

Tucker Decomposition

The Tucker decomposition expresses an order d tensor via a smaller order d core tensor and d factor matrices

Tucker Decomposition Basics

The Tucker decomposition is used in many of the same contexts as CP

Basic properties and methods

Tensor Train Decomposition

The tensor train decomposition expresses an order d tensor as a chain of products of order 2 or order 3 tensors

Tensor Train Decomposition Basics

Tensor train has applications in quantum simulation and in numerical PDEs

Basic properties and methods

Summary of Tensor Decomposition Basics

We can compare the aforementioned decomposition for an order d tensor with all dimensions equal to n and all decomposition ranks equal to R

decomposition	СР	Tucker	tensor train
size			
uniqueness			
orthogonalizability			
exact decomposition			
approximation			
typical method			