CS 598 EVS: Tensor Computations Basics of Tensor Computations

Edgar Solomonik

University of Illinois, Urbana-Champaign

Tensors

A *tensor* is a collection of elements

- § its *dimensions* define the size of the collection
- § its *order* is the number of different dimensions
- § specifying an index along each tensor *mode* defines an element of the tensor
- A few examples of tensors are
	- ▶ Order 0 tensors are scalars, e.g., $s \in \mathbb{R}$
	- ▶ Order 1 tensors are vectors, e.g., $v \in \mathbb{R}^n$
	- ▶ Order 2 tensors are matrices, e.g., $A \in \mathbb{R}^{m \times n}$
	- ▶ An order 3 tensor with dimensions $s_1 \times s_2 \times s_3$ is denoted as $\mathcal{T} \in \mathbb{R}^{s_1 \times s_2 \times s_3}$ with elements t_{ijk} for $i \in \{1, \ldots, s_1\}, j \in \{1, \ldots, s_2\}, k \in \{1, \ldots, s_3\}$

Reshaping Tensors

Its often helpful to use alternative views of the same collection of elements

- § *Folding* a tensor yields a higher-order tensor with the same elements
- § *Unfolding* a tensor yields a lower-order tensor with the same elements
- In linear algebra, we have the unfolding $v = \text{vec}(A)$, which stacks the columns of $\boldsymbol{A} \in \mathbb{R}^{m \times n}$ to produce $\boldsymbol{v} \in \mathbb{R}^{mn}$
- ▶ For a tensor $\mathcal{T}\in \mathbb{R}^{s_1\times s_2\times s_3},$ $v = \text{vec}(\mathcal{T})$ gives $v\in \mathbb{R}^{s_1s_2s_3}$ with

$$
v_{i+(j-1)s_1+(k-1)s_1s_2} = t_{ijk}
$$

► A common set of unfoldings is given by matricizations of a tensor, e.g., for order 3,

$$
\boldsymbol{T}_{(1)} \in \mathbb{R}^{s_1 \times s_2 s_3}, \boldsymbol{T}_{(2)} \in \mathbb{R}^{s_2 \times s_1 s_3}, \text{ and } \boldsymbol{T}_{(3)} \in \mathbb{R}^{s_3 \times s_1 s_2}
$$

Matrices and Tensors as Operators and Multilinear Forms

- § What is a matrix?
	- ► A collection of numbers arranged into an array of dimensions $m \times n$, e.g., $\boldsymbol{M} \in \mathbb{R}^{m \times n}$
	- A linear operator $f_M(x) = Mx$
	- \blacktriangleright A bilinear form x^TMy
- § What is a tensor?
	- \blacktriangleright A collection of numbers arranged into an array of a particular order, with dimensions $l \times m \times n \times \cdots$, e.g., $\boldsymbol{\mathcal{T}} \in \mathbb{R}^{l \times m \times n}$ is order 3
	- A multilinear operator $z = f_{\mathcal{T}}(x, y)$

$$
z_i = \sum_{j,k} t_{ijk} x_j y_k
$$

▶ A multilinear form $\sum_{i,j,k} t_{ijk} x_i y_j z_k$

Tensor Transposition

For tensors of order \geqslant 3, there is more than one way to transpose modes

 \triangleright A *tensor transposition* is defined by a permutation p containing elements $\{1, \ldots, d\}$

$$
y_{i_{p_1},\ldots,i_{p_d}} = x_{i_1,\ldots,i_d}
$$

▶ In this notation, a transposition A^T of matrix A is defined by $p = [2, 1]$ so that

$$
b_{i_2 i_1} = a_{i_1 i_2}
$$

- \triangleright Tensor transposition is a convenient primitive for manipulating multidimensional arrays and mapping tensor computations to linear algebra
- ► When elementwise expressions are used in tensor algebra, indices are often carried through to avoid transpositions

Tensor Symmetry

We say a tensor is *symmetric* if $\forall j, k \in \{1, \ldots, d\}$

 $t_{i_1...i_i...i_k...i_d} = t_{i_1...i_k...i_i...i_d}$

A tensor is *antisymmetric* (skew-symmetric) if $\forall j, k \in \{1, \ldots, d\}$

$$
t_{i_1\ldots i_j\ldots i_k\ldots i_d}=(-1)t_{i_1\ldots i_k\ldots i_j\ldots i_d}
$$

A tensor is *partially-symmetric* if such index interchanges are restricted to be within disjoint subsets of $\{1, \ldots, d\}$, e.g., if the subsets for $d = 4$ and $\{1, 2\}$ and $\{3, 4\}$, then

$$
t_{ijkl} = t_{jikl} = t_{jilk} = t_{ijlk}
$$

Tensor Sparsity

We say a tensor T is *diagonal* if for some v .

$$
t_{i_1,\dots,i_d} = \begin{cases} v_{i_1} &: i_1 = \dots = i_d \\ 0 &: \text{otherwise} \end{cases} = v_{i_1} \delta_{i_1 i_2} \delta_{i_2 i_3} \cdots \delta_{i_{d-1} i_d}
$$

- \blacktriangleright In the literature, such tensors are sometimes also referred to as 'superdiagonal'
- ▶ Generalizes diagonal matrix
- \triangleright A diagonal tensor is symmetric (and not antisymmetric)

If most of the tensor entries are zeros, the tensor is *sparse*

- § Generalizes notion of sparse matrices
- § Sparsity enables computational and memory savings
- ► We will consider data structures and algorithms for sparse tensor operations later in the course

Tensor Products and Kronecker Products

Tensor products can be defined with respect to maps $f: V_f \to W_f$ and $g: V_a \to W_a$

Tensors can be used to represent multilinear maps and have a corresponding definition for a tensor product

The *Kronecker product* between two matrices $\bm A \in \mathbb{R}^{m_1 \times m_2},$ $\bm B \in \mathbb{R}^{n_1 \times n_2}$

Properties of Einstein Summation Expressions

Given an elementwise expression containing a product of tensors, the operands commute

A contraction can be succinctly described by a *tensor diagram*

Tensor Contractions

A *tensor contraction* multiplies elements of two tensors and computes partial sums to produce a third, in a fashion expressible by pairing up modes of different tensors, defining *einsum* (term stems from Einstein's summation convention)

The terms 'contraction' and 'einsum' are also often used when more than two operands are involved

General Tensor Contractions

Given tensor U of order $s + v$ and V of order $v + t$, a tensor contraction summing over v modes can be written as

Unfolding the tensors reduces the tensor contraction to matrix multiplication

Matrix-style Notation for Tensor Contractions

The *tensor times matrix* contraction along the mth mode of U to produce V is expressed as follows

The *Khatri-Rao product* of two matrices $\boldsymbol{U} \in \mathbb{R}^{m \times k}$ and $\boldsymbol{V} \in \mathbb{R}^{n \times k}$ products $\boldsymbol{W} \in \mathbb{R}^{mn \times k}$ so that

Identities with Kronecker and Khatri-Rao Products

▶ Matrix multiplication is distributive over the Kronecker product

§ For the Khatri-Rao product a similar distributive identity is

Multilinear Tensor Operations

Given an order d tensor $\bm{\mathcal{T}},$ define multilinear function $\bm{x}^{(1)}=\bm{f}^{(\bm{\mathcal{T}})}(\bm{x}^{(2)},\dots,\bm{x}^{(d)})$

Batched Multilinear Operations

The multilinear map $f^{(\mathcal{T})}$ is frequently used in tensor computations

Tensor Norm and Conditioning of Multilinear Functions

We can define elementwise and operator norms for a tensor $\mathcal T$

Conditioning of Multilinear Functions

Evaluation of the multilinear map is typically ill-posed for worst case inputs

Well-conditioned Tensors

For equidimensional tensors (all modes of same size), some small ideally conditioned tensors exist

Ill-conditioned Tensors

For
$$
n \notin \{2, 4, 8\}
$$
 given any $\mathcal{T} \in \mathbb{R}^{n \times n \times n}$, $\inf_{\bm{x}, \bm{y} \in \mathbb{S}^{n-1}} \| \bm{f}^{(\mathcal{T})}(\bm{x}, \bm{y}) \|_2 = 0$

Algebras as Tensors

▶ A third order tensor can be used to describe an algebra

 \triangleright The Hurwitz problem also gives result concerning existance of compositional algebras and division algebras

CP Decomposition

§ The *canonical polyadic or CANDECOMP/PARAFAC (CP) decomposition* expresses an order d tensor in terms of d factor matrices

CP Decomposition Basics

▶ The CP decomposition is useful in a variety of contexts

▶ Basic properties and methods

Tucker Decomposition

 \blacktriangleright The *Tucker decomposition* expresses an order d tensor via a smaller order d core tensor and d factor matrices

Tucker Decomposition Basics

§ The Tucker decomposition is used in many of the same contexts as CP

▶ Basic properties and methods

Tensor Train Decomposition

§ The *tensor train decomposition* expresses an order d tensor as a chain of products of order 2 or order 3 tensors

Tensor Train Decomposition Basics

§ Tensor train has applications in quantum simulation and in numerical PDEs

▶ Basic properties and methods

Summary of Tensor Decomposition Basics

We can compare the aforementioned decomposition for an order d tensor with all dimensions equal to n and all decomposition ranks equal to R

