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Bilinear Problems

§ A number of basic numerical problems can be thought of as bilinear
functions associated with particular order 3 tensors

§ matrix multiplication
§ discrete convolution
§ symmetric tensor contractions

§ These problems admit nontrivial fast bilinear algorithms, which correspond
to low-rank CP decompositions of the tensors

§ Strassen’s Opnlog2p7qq algorithm for matrix multiplication as well as all other
subcubic matrix multiplication

§ The discrete Fourier transform (DFT), Toom-Cook, and Winograd algorithms for
convolution are also examples of bilinear algorithms

§ We will review fast bilinear algorithms for all of these approaches, using
0-based indexing when discussing convolution



Bilinear Problems
§ A bilinear problem for any inputs a P Rn and b P Rk computes c P Rm as

defined by a tensor T P Rmˆnˆk

ci “
ÿ

j,k

tijkajbk ô c “ f pT qpa, bq

§ Variants of discrete convolutions (linear convolution, correlation, cyclic
convolution) provide simple examples of T

§ Linear convolution

tijk “

#

1 : k ` i ´ j “ 0

0 : otherwise
ñ ci “

ÿ

j,k

tijkajbk “

minpi,n´1q
ÿ

j“maxp0,i´n`1q

ajbi´j

§ Correlation obtained by transposing the first and last mode of the linear
convolution tensor

§ Cyclic convolution has tijk “ 1 if and only if k ` i ´ j “ 0 pmod nq



Bilinear Algorithms

A bilinear algorithm (V. Pan, 1984) Λ “ pF pAq,F pBq,F pCqq computes

c “ F pCqrpF pAqTaq ˚ pF pBqTbqs,

where a and b are inputs and ˚ is the Hadamard (pointwise) product.



Bilinear Algorithms as Tensor Factorizations
§ A bilinear algorithm corresponds to a CP tensor decomposition

ci “

R
ÿ

r“1

f
pCq

ir

ˆ

ÿ

j

f
pAq

jr aj

˙ˆ

ÿ

k

f
pBq

kr bk

˙

“
ÿ

j

ÿ

k

ˆ R
ÿ

r“1

f
pCq

ir f
pAq

jr f
pBq

kr

˙

ajbk

“
ÿ

j

ÿ

k

tijkajbk where tijk “

R
ÿ

r“1

f
pCq

ir f
pAq

jr f
pBq

kr

§ For multiplication of n ˆ n matrices, we can define a matrix multiplication
tensor and consider algorithms with various bilinear rank

§ T is n2 ˆ n2 ˆ n2

§ Classical algorithm has rank R “ n3

§ Strassen’s algorithm has rank R « nlog2p7q



Strassen’s Algorithm
Strassen’s algorithm

„

C11 C12

C21 C22

ȷ

“

„

A11 A12

A21 A22

ȷ

¨

„

B11 B12

B21 B22

ȷ

M1 “ pA11 ` A22q ¨ pB11 ` B22q

M2 “ pA21 ` A22q ¨ B11

M3 “ A11 ¨ pB12 ´ B22q

M4 “ A22 ¨ pB21 ´ B11q

M5 “ pA11 ` A12q ¨ B22

M6 “ pA21 ´ A11q ¨ pB11 ` B12q

M7 “ pA12 ´ A22q ¨ pB21 ` B22q

C11 “ M1 ` M4 ´ M5 ` M7

C21 “ M2 ` M4

C12 “ M3 ` M5

C22 “ M1 ´ M2 ` M3 ` M6

By performing the nested calls recursively, Strassen’s algorithm achieves cost,

T pnq “ 7T pn{2q ` Opn2q “ Op7log2 nq “ Opnlog2 7q

For recent developments in algorithms for fast matrix multiplication, see ”Flip
Graphs for Matrix Multiplication”, Kauers and Moosbauer (2023).



Fast Bilinear Algorithms for Convolution
§ Linear convolution corresponds to polynomial multiplication

§ Let a and b be coefficients of degree n ´ 1 polynomial p and degree k ´ 1
polynomial q then

pp ¨ qqpxq “

n`k´1
ÿ

i“0

cix
i where ci “

minpi,n´1q
ÿ

j“maxp0,i´n`1q

ajbi´j

§ This view motivates algorithms based on polynomial interpolation

§ The Toom-Cook convolution algorithm computes the coefficients of p ¨ q by
computing pp ¨ qqpxiq for i P t1, . . . , n ` k ´ 1u and interpolates

§ Let Vr be a pn ` k ´ 1q-by-r Vandermonde matrix based on the nodes x, so that
Vna “ rppx1q, ¨ ¨ ¨ , ppxn`k´1qsT , etc.

§ Then to evaluate p and q at x and interpolate, we compute

c “ V ´1
n`k´1ppVnaq d pVkbqq

which is a bilinear algorithm



Toom-Cook Convolution and the Fourier Transform
§ Vandermonde matrices are ill-conditioned with real nodes, but can be

perfectly conditioned with complex nodes
§ The condition number of a Vandermonde matrix with real nodes is exponential

in its dimension
§ Choosing the nodes x to be the complex roots of unity gives the discrete Fourier

transform (DFT) matrix Dpnq, dpnq

jk “ ωjk
n where ωn “ e2iπ{n

§ Modulo normalization DFT matrix is orthogonal and symmetric (not Hermitian)

§ The fast Fourier transform (FFT) can be used to perform products with the
DFT matrix in Opn log nq time Taking D̃pnq to be the n1 ˆ n2 (for n “ n1n2)
leading minor of Dn we can compute y “ Dpnqx via the split-radix-n1 FFT,

yk “

n´1
ÿ

i“0

xiω
ik
n “

n{2´1
ÿ

i“0

x2iω
ik
n{2 ` ωk

n

n{2´1
ÿ

i“0

x2i`1ω
ik
n{2

ypkn1`tq “

n1´1
ÿ

s“0

ωst
n1

«

ωsk
n

n2´1
ÿ

i“0

xpin1`sqω
ik
n2

ff

ô Y “ prD̃pnq d pDpn2qAqsDpn1qqT



Cyclic Convolution via DFT
§ For linear convolution Dpn`k´1q is used, for cyclic convolution Dpnq suffices

§ Expanding the bilinear algorithm, y “ Dpnq´1`

pDpnqfq d pDpnqgq
˘

, we obtain

yk “
1

n

n´1
ÿ

i“0

ω´ki
pnq

ˆ n´1
ÿ

j“0

ωij
pnq

fj

˙ˆ n´1
ÿ

t“0

ωit
pnqgt

˙

“
1

n

n´1
ÿ

i“0

n´1
ÿ

j“0

n´1
ÿ

t“0

ω
pj`t´kqi
pnq

fjgt

§ It suffices to observe that for any fixed u “ j ` t ´ k ‰ 0 or ‰ n, the outer
summation yields a zero result, since the geometric sum simplifies to

n´1
ÿ

i“0

ωui
pnq “ p1 ´ pωu

pnqqnq{p1 ´ ωu
pnqq “ 0

§ The DFT also arises in the eigendecomposition of a circulant matrix
§ The cyclic convolution is defined by the matrix-vector product y “ Cxayb where

Cxay “

«

a0 ¨ ¨ ¨ a1

...
. . .

...
an´1 ¨ ¨ ¨ a0

ff

§ The eigenvalue decomposition of this matrix is Cxay “ Dpnq´1
diagpDpnqaqDpnq



Symmetric Tensor Contractions
§ Bilinear algorithms can also be used to accelerate tensor contractions for

tensors with symmetry
§ Recall a symmetric tensor is defined by e.g., tijk “ tikj “ tkij “ tjki “ tjik “ tkji
§ Tensors can also have skew-symmetry (also known as antisymmetry,

permutations have `{´ signs), partial symmetry (only some modes are
permutable), or group symmetry (blocks are zero if indices satisfy modular
equation)

§ The simplest example of a symmetric tensor contraction is

y “ Ax where A “ AT

it is not obvious how to leverage symmetry to reduce cost of this contraction

§ Bilinear algorithms for symmetric tensor contractions exist with lower rank
than their nonsymmetric counterparts

§ Symmetric matrix-vector product can be done with npn ` 1q{2 multiplications
§ Cost of contractions of partially symmetric tensors reduced via this technique



Symmetric Matrix Vector Product
§ Consider computing c “ Ab with A “ AT

§ Typically requires n2 multiplications since aijbj ‰ ajibi and n2 ´ n additions
§ Instead can compute

vi “

i´1
ÿ

j“1

uij `

n
ÿ

j“i`1

uji where uij “ aijpbi ` bjq

using npn ´ 1q{2 multiplications (since we only need uij for i ą j) and about
3n2{2 additions, then

ci “ p2aii ´

n
ÿ

j“1

aijqbi ` vi

using n more multiplications and n2 additions
§ Beneficial when multiplying elements of A and b costs more than addition
§ This technique yields a bilinear algorithm with rank npn ` 1q{2



Partially-Symmetric Tensor Times Matrix (TTM)
§ Can use symmetric mat-vec algorithm to accelerate TTM with partially

symmetric tensor from 2n4 operations to p3{2qn4 ` Opn3q

§ Given A P Rnˆnˆn with symmetry aijk “ ajik and B P Rnˆn, we compute

cikl “
ÿ

j

aijkbjl

§ We can think of this as a set of symmetric matrix-vector products

cpk,lq “ Apkqbplq

and apply the fast bilinear algorithm

vikl “

i´1
ÿ

j“1

uijkl `

n
ÿ

j“i`1

uijkl where uijkl “ aijkpbil ` bjlq

cikl “ p2aiik ´

n
ÿ

j“1

aijkqbil ` vikl

using about n4{2 multiplications and n4 ` Opn3q additions (need only n3 distinct
sums of elements of B) to compute V , then Opn3q operations to get C from V



Computing Symmetric Matrices
§ Output symmetry can also be used to reduced cost, for example when

computing a symmetrized outer product C “ abT ` baT

§ C “ CT so suffices to compute cij for i ě j, cij “ aibj ` ajbi
§ To reduce number of products by a factor of 2, can instead compute

cij “ pai ` ajqpbi ` bjq ´ vi ´ vj where vi “ aibi

§ To symmetrize product of two symmetric matrices, can compute
anticommutator, C “ AB ` BA

§ Each matrix can be represented with npn ` 1q{2 elements, but products all n3

products aikbkj are distinct (so typically cost is 2n3)
§ Cost can be reduced to n3{6 ` Opn2q products by amortizing terms in

cij “
ÿ

k

paij ` aik ` ajkqpbij ` bik ` bjkq ´ naijbij

´

´

ÿ

k

aik ` ajk

¯

bij ´ aij

´

ÿ

k

bik ` bjk

¯

´
ÿ

k

aikbik ´
ÿ

k

ajkbjk



General Symmetric Tensor Contractions
§ We can now consider the cost of a symmetrized contraction over v indices of

symmetric tensors A (of order s ` v) and B (of order v ` t)

ci1
1...i

1
s,j

1
1...j

1
t

“
ÿ

ti1...is,j1...jtuPΠpi1
1...i

1
s,j

1
1...j

1
tq

ÿ

k1...kv

ai1...is,k1...kvbk1...kv ,j1...jt

where Π gives all distinct partitions of the s ` t indices into two subsets of
size s and t, e.g.,

Πpi1, j1j2q “ tti1, j1j2u, tj1, i1j2u, tj2, i1j1uu

§ Such tensor contractions can be done using
ns`t`v{ps ` t ` vq! ` Opns`t`v´1q products

§ General algorithm looks similar to anticommutator matrix product
§ After multiplying subsets of operands, unneeded terms are all computable with

Opns`t`v´1q products
§ These approaches correspond to bilinear algorithms of this rank



Summary of Bilinear Algorithms

We reviewed bilinear algorithms for 3 problems, which may all be viewed as
special cases of tensor contractions

§ fast matrix multiplication algorithms such as Strassen’s, reduce the
asymptotic scaling of tensor contractions, as these are isomorphic to
mat.-mul.

§ fast convolution algorithms such as Toom-Cook and DFT/FFT, reduce even
more significantly the asymptotic cost of tensor contractions with tensors
that have Toeplitz/Hankel/circulant structure, as these are equivalent to
convolutions

§ symmetry-preserving tensor contractions algorithms reduce cost of tensor
contractions by a factor that increases factorially with tensor order, if the
tensors involved are symmetric



Summary of Nested Bilinear Algorithms
For the tensor T pnq defining any of the 3 problems for input size n, T pnq b T pnq

defines a problem for larger inputs
§ in each case, we may obtain a bilinear algorithm of rank R2 for T pnq b T pnq

from bilinear algorithms of rank R for T pnq via Kronecker products of the
factors

§ for matrix multiplication with dimension n, T pnq b T pnq defines the tensor for
multiplication of matrices with dimension n2

§ for convolution of vectors with dimension n, T pnq b T pnq defines a 2D
convolution (to which a 1D convolution of size equal to or within a constant of
n2 can be reduced)

§ for symmetric tensor contractions, T pnq b T pnq defines the problem of
contracting two partially symmetric tensors (with two groups of symmetric
modes)


