CS 598 EVS: Tensor Computations Bilinear Algorithms

Edgar Solomonik

University of Illinois, Urbana-Champaign

Bilinear Problems

- ▶ A number of basic numerical problems can be thought of as bilinear functions associated with particular order 3 tensors
	- § *matrix multiplication*
	- § *discrete convolution*
	- § *symmetric tensor contractions*
- § These problems admit nontrivial fast *bilinear algorithms*, which correspond to low-rank CP decompositions of the tensors
	- \blacktriangleright Strassen's $O(n^{\log_2(7)})$ algorithm for matrix multiplication as well as all other *subcubic matrix multiplication*
	- § *The discrete Fourier transform (DFT), Toom-Cook, and Winograd algorithms for convolution are also examples of bilinear algorithms*
- § *We will review fast bilinear algorithms for all of these approaches, using* 0*-based indexing when discussing convolution*

Bilinear Problems

 \blacktriangleright A bilinear problem for any inputs $\bm{a}\in \mathbb{R}^n$ and $\bm{b}\in \mathbb{R}^k$ computes $\bm{c}\in \mathbb{R}^m$ as defined by a tensor $\boldsymbol{\mathcal{T}} \in \mathbb{R}^{m \times n \times k}$

$$
c_i = \sum_{j,k} t_{ijk} a_j b_k \quad \Leftrightarrow \quad \bm{c} = \bm{f}^{(\bm{\mathcal{T}})}(\bm{a}, \bm{b})
$$

- § Variants of discrete convolutions (linear convolution, correlation, cyclic convolution) provide simple examples of $\mathcal T$
	- § *Linear convolution*

$$
t_{ijk} = \begin{cases} 1: k+i-j = 0 \\ 0: \text{otherwise} \end{cases} \Rightarrow c_i = \sum_{j,k} t_{ijk} a_j b_k = \sum_{j=\max(0,i-n+1)}^{\min(i,n-1)} a_j b_{i-j}
$$

- § *Correlation obtained by transposing the first and last mode of the linear convolution tensor*
- ▶ *Cyclic convolution has* $t_{ijk} = 1$ *if and only if* $k + i j = 0 \pmod{n}$

Bilinear Algorithms

A bilinear algorithm (V. Pan, 1984) $\Lambda = (\boldsymbol{F}^{(A)}, \boldsymbol{F}^{(B)}, \boldsymbol{F}^{(C)})$ computes

$$
\bm{c} = \bm{F}^{(C)}[(\bm{F}^{(A)T}\bm{a}) * (\bm{F}^{(B)T}\bm{b})],
$$

where a and b are inputs and $*$ is the Hadamard (pointwise) product.

Bilinear Algorithms as Tensor Factorizations

▶ A bilinear algorithm corresponds to a CP tensor decomposition

$$
c_i = \sum_{r=1}^{R} f_{ir}^{(C)} \left(\sum_{j} f_{jr}^{(A)} a_j \right) \left(\sum_{k} f_{kr}^{(B)} b_k \right)
$$

=
$$
\sum_{j} \sum_{k} \left(\sum_{r=1}^{R} f_{ir}^{(C)} f_{jr}^{(A)} f_{kr}^{(B)} \right) a_j b_k
$$

=
$$
\sum_{j} \sum_{k} t_{ijk} a_j b_k \text{ where } t_{ijk} = \sum_{r=1}^{R} f_{ir}^{(C)} f_{jr}^{(A)} f_{kr}^{(B)}
$$

- \blacktriangleright For multiplication of $n \times n$ matrices, we can define a *matrix multiplication tensor* and consider algorithms with various bilinear rank
	- \blacktriangleright **T** is $n^2 \times n^2 \times n^2$
	- \blacktriangleright Classical algorithm has rank $R=n^3$
	- ▶ Strassen's algorithm has rank $R \approx n^{\log_2(7)}$

Strassen's Algorithm	
Strassen's algorithm $\begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \cdot \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$	
$M_1 = (A_{11} + A_{22}) \cdot (B_{11} + B_{22})$	$C_{11} = M_1 + M_4 - M_5 + M_7$
$M_2 = (A_{21} + A_{22}) \cdot B_{11}$	$C_{21} = M_2 + M_4$
$M_3 = A_{11} \cdot (B_{12} - B_{22})$	$C_{12} = M_3 + M_5$
$M_4 = A_{22} \cdot (B_{21} - B_{11})$	$C_{22} = M_1 - M_2 + M_3 + M_6$
$M_5 = (A_{11} + A_{12}) \cdot B_{22}$	
$M_6 = (A_{21} - A_{11}) \cdot (B_{11} + B_{12})$	
$M_7 = (A_{12} - A_{22}) \cdot (B_{21} + B_{22})$	

By performing the nested calls recursively, Strassen's algorithm achieves cost,

$$
T(n) = 7T(n/2) + O(n^{2}) = O(7^{\log_2 n}) = O(n^{\log_2 7})
$$

For recent developments in algorithms for fast matrix multiplication, see "Flip Graphs for Matrix Multiplication", Kauers and Moosbauer (2023).

Fast Bilinear Algorithms for Convolution

- \blacktriangleright Linear convolution corresponds to polynomial multiplication
	- \blacktriangleright Let a and b be coefficients of degree $n 1$ polynomial p and degree $k 1$ *polynomial* q *then*

$$
(p \cdot q)(x) = \sum_{i=0}^{n+k-1} c_i x^i \quad \text{where} \quad c_i = \sum_{j=\max(0,i-n+1)}^{\min(i,n-1)} a_j b_{i-j}
$$

- § *This view motivates algorithms based on polynomial interpolation*
- Extemment Toom-Cook convolution algorithm computes the coefficients of $p \cdot q$ by computing $(p \cdot q)(x_i)$ for $i \in \{1, \ldots, n + k - 1\}$ and interpolates
	- \blacktriangleright Let V_r be a $(n + k 1)$ -by- r Vandermonde matrix based on the nodes x, so that $V_n a = [p(x_1), \cdots, p(x_{n+k-1})]^T$, etc.
	- § *Then to evaluate* p *and* q *at* x *and interpolate, we compute*

$$
\boldsymbol{c} = \boldsymbol{V}_{n+k-1}^{-1}((\boldsymbol{V}_n \boldsymbol{a}) \odot (\boldsymbol{V}_k \boldsymbol{b}))
$$

which is a bilinear algorithm

Toom-Cook Convolution and the Fourier Transform

- \triangleright Vandermonde matrices are ill-conditioned with real nodes, but can be perfectly conditioned with complex nodes
	- § *The condition number of a Vandermonde matrix with real nodes is exponential in its dimension*
	- § *Choosing the nodes* x *to be the complex roots of unity gives the discrete Fourier* $\emph{transform (DFT) matrix }$ $\bm{D}^{(n)},$ $d^{(n)}_{jk} = \omega^{jk}_n$ where $\omega_n = e^{2i\pi/n}$
	- § *Modulo normalization DFT matrix is orthogonal and symmetric (not Hermitian)*
- § The *fast Fourier transform (FFT)* can be used to perform products with the DFT matrix in $O(n\log n)$ time *Taking* $\tilde{\bm{D}}^{(n)}$ to be the $n_1 \times n_2$ (for $n = n_1n_2$) *leading minor of* D_n we can compute $y = D^{(n)}x$ via the split-radix- n_1 FFT,

$$
y_k = \sum_{i=0}^{n-1} x_i \omega_n^{ik} = \sum_{i=0}^{n/2-1} x_{2i} \omega_{n/2}^{ik} + \omega_n^k \sum_{i=0}^{n/2-1} x_{2i+1} \omega_{n/2}^{ik}
$$

$$
y_{(kn_1+t)} = \sum_{s=0}^{n_1-1} \omega_{n_1}^{st} \left[\omega_n^{sk} \sum_{i=0}^{n_2-1} x_{(in_1+s)} \omega_{n_2}^{ik} \right] \Leftrightarrow Y = \left(\left[\tilde{D}^{(n)} \odot (D^{(n_2)}A) \right] D^{(n_1)} \right)^T
$$

Cyclic Convolution via DFT

- \blacktriangleright For linear convolution $D^{(n+k-1)}$ is used, for cyclic convolution $D^{(n)}$ suffices ˘
	- **Expanding the bilinear algorithm,** $y = D^{(n)^{-1}}((D^{(n)}f) \odot (D^{(n)}g))$ *, we obtain*

$$
y_k = \frac{1}{n} \sum_{i=0}^{n-1} \omega_{(n)}^{-ki} \bigg(\sum_{j=0}^{n-1} \omega_{(n)}^{ij} f_j \bigg) \bigg(\sum_{t=0}^{n-1} \omega_{(n)}^{it} g_t \bigg) = \frac{1}{n} \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} \sum_{t=0}^{n-1} \omega_{(n)}^{(j+t-k)i} f_j g_t
$$

▶ It suffices to observe that for any fixed $u = j + t - k \neq 0$ or $\neq n$, the outer *summation yields a zero result, since the geometric sum simplifies to*

$$
\sum_{i=0}^{n-1} \omega_{(n)}^{ui} = (1 - (\omega_{(n)}^u)^n)/(1 - \omega_{(n)}^u) = 0
$$

- \triangleright The DFT also arises in the eigendecomposition of a circulant matrix
	- ▶ The cyclic convolution is defined by the matrix-vector product $y = C_{\langle a \rangle} b$ where

$$
\mathbf{C}_{\langle \mathbf{a} \rangle} = \begin{bmatrix} a_0 & \cdots & a_1 \\ \vdots & \ddots & \vdots \\ a_{n-1} & \cdots & a_0 \end{bmatrix}
$$

 \blacktriangleright The eigenvalue decomposition of this matrix is $\bm{C_{\langle a \rangle}} = \bm{D}^{(n)^{-1}} \text{diag}(\bm{D}^{(n)} \bm{a}) \bm{D}^{(n)}$

Symmetric Tensor Contractions

- \triangleright Bilinear algorithms can also be used to accelerate tensor contractions for tensors with symmetry
	- ▶ Recall a symmetric tensor is defined by e.g., $t_{iik} = t_{ikj} = t_{kij} = t_{jiki} = t_{jiki} = t_{kji}$
	- § *Tensors can also have skew-symmetry (also known as antisymmetry, permutations have* `{´ *signs), partial symmetry (only some modes are permutable), or group symmetry (blocks are zero if indices satisfy modular equation)*
	- § *The simplest example of a symmetric tensor contraction is*

 $y = Ax$ where $A = A^T$

it is not obvious how to leverage symmetry to reduce cost of this contraction

- ► Bilinear algorithms for symmetric tensor contractions exist with lower rank than their nonsymmetric counterparts
	- **▶ Symmetric matrix-vector product can be done with** $n(n + 1)/2$ multiplications
	- § *Cost of contractions of partially symmetric tensors reduced via this technique*

Symmetric Matrix Vector Product

- \blacktriangleright Consider computing $\boldsymbol{c} = \boldsymbol{Ab}$ with $\boldsymbol{A} = \boldsymbol{A}^T$
	- \blacktriangleright Typically requires n^2 multiplications since $a_{ij}b_j \neq a_{ji}b_i$ and n^2-n additions
	- § *Instead can compute*

$$
v_i = \sum_{j=1}^{i-1} u_{ij} + \sum_{j=i+1}^{n} u_{ji} \quad \text{where} \quad u_{ij} = a_{ij} (b_i + b_j)
$$

using $n(n - 1)/2$ *multiplications (since we only need* u_{ij} *for* $i > j$) and about $3n^2/2$ additions, then

$$
c_i = (2a_{ii} - \sum_{j=1}^{n} a_{ij})b_i + v_i
$$

using n *more multiplications and* n ² *additions*

- § *Beneficial when multiplying elements of* A *and* b *costs more than addition*
- \blacktriangleright This technique yields a bilinear algorithm with rank $n(n+1)/2$

Partially-Symmetric Tensor Times Matrix (TTM)

- \triangleright Can use symmetric mat-vec algorithm to accelerate TTM with partially symmetric tensor from $2n^4$ operations to $(3/2)n^4 + O(n^3)$
	- ▶ Given $\boldsymbol{\mathcal{A}}\in \mathbb{R}^{n\times n\times n}$ with symmetry $a_{ijk}=a_{jik}$ and $\boldsymbol{B}\in \mathbb{R}^{n\times n}$, we compute

$$
c_{ikl} = \sum_j a_{ijk} b_{jl}
$$

§ *We can think of this as a set of symmetric matrix-vector products*

$$
\boldsymbol{c}^{(k,l)} = \boldsymbol{A}^{(k)} \boldsymbol{b}^{(l)}
$$

and apply the fast bilinear algorithm

$$
v_{ikl} = \sum_{j=1}^{i-1} u_{ijkl} + \sum_{j=i+1}^{n} u_{ijkl} \text{ where } u_{ijkl} = a_{ijk}(b_{il} + b_{jl})
$$

$$
c_{ikl} = (2a_{iik} - \sum_{j=1}^{n} a_{ijk})b_{il} + v_{ikl}
$$

using about $n^4/2$ multiplications and $n^4 + O(n^3)$ additions (need only n^3 distinct sums of elements of \boldsymbol{B}) to compute $\boldsymbol{\mathcal{V}}$, then $O(n^3)$ operations to get $\boldsymbol{\mathcal{C}}$ from $\boldsymbol{\mathcal{V}}$

Computing Symmetric Matrices

- \triangleright Output symmetry can also be used to reduced cost, for example when computing a symmetrized outer product $C = ab^T + ba^T$
	- $\blacktriangleright\; \bm{C} = \bm{C}^T$ so suffices to compute c_{ij} for $i \geqslant j, \, c_{ij} = a_i b_j + a_j b_i$
	- § *To reduce number of products by a factor of 2, can instead compute*

$$
c_{ij} = (a_i + a_j)(b_i + b_j) - v_i - v_j \quad \text{where} \quad v_i = a_i b_i
$$

- \triangleright To symmetrize product of two symmetric matrices, can compute anticommutator, $C = AB + BA$
	- \blacktriangleright Each matrix can be represented with $n(n+1)/2$ elements, but products all n^3 products $a_{ik}b_{kj}$ are distinct (so typically cost is $2n^3)$
	- \blacktriangleright Cost can be reduced to $n^3/6 + O(n^2)$ products by amortizing terms in

$$
c_{ij} = \sum_{k} (a_{ij} + a_{ik} + a_{jk})(b_{ij} + b_{ik} + b_{jk}) - na_{ij}b_{ij}
$$

- $\left(\sum_{k} a_{ik} + a_{jk}\right)b_{ij} - a_{ij}\left(\sum_{k} b_{ik} + b_{jk}\right) - \sum_{k} a_{ik}b_{ik} - \sum_{k} a_{jk}b_{jk}$

General Symmetric Tensor Contractions

 \blacktriangleright We can now consider the cost of a symmetrized contraction over v indices of symmetric tensors A (of order $s + v$) and B (of order $v + t$)

$$
c_{i'_1...i'_s,j'_1...j'_t} = \sum_{\{i_1...i_s,j_1...j_t\} \in \Pi(i'_1...i'_s,j'_1...j'_t)} \sum_{k_1...k_v} a_{i_1...i_s,k_1...k_v} b_{k_1...k_v,j_1...j_t}
$$

where Π *gives all distinct partitions of the* s ` t *indices into two subsets of size* s *and* t*, e.g.,*

$$
\Pi(i_1, j_1 j_2) = \{\{i_1, j_1 j_2\}, \{j_1, i_1 j_2\}, \{j_2, i_1 j_1\}\}\
$$

- ▶ Such tensor contractions can be done using $n^{s+t+v}/(s+t+v)! + O(n^{s+t+v-1})$ products
	- § *General algorithm looks similar to anticommutator matrix product*
	- § *After multiplying subsets of operands, unneeded terms are all computable with* $O(n^{s+t+v-1})$ products
	- § *These approaches correspond to bilinear algorithms of this rank*

Summary of Bilinear Algorithms

We reviewed bilinear algorithms for 3 problems, which may all be viewed as special cases of tensor contractions

- § *fast matrix multiplication algorithms such as Strassen's, reduce the asymptotic scaling of tensor contractions, as these are isomorphic to mat.-mul.*
- § *fast convolution algorithms such as Toom-Cook and DFT/FFT, reduce even more significantly the asymptotic cost of tensor contractions with tensors that have Toeplitz/Hankel/circulant structure, as these are equivalent to convolutions*
- § *symmetry-preserving tensor contractions algorithms reduce cost of tensor contractions by a factor that increases factorially with tensor order, if the tensors involved are symmetric*

Summary of Nested Bilinear Algorithms

For the tensor $\mathcal{T}^{(n)}$ defining any of the 3 problems for input size $n,$ $\mathcal{T}^{(n)}$ \otimes $\mathcal{T}^{(n)}$ defines a problem for larger inputs

- \blacktriangleright in each case, we may obtain a bilinear algorithm of rank R^2 for $\mathcal{T}^{(n)}\otimes \mathcal{T}^{(n)}$ from bilinear algorithms of rank R for $\mathcal{T}^{(n)}$ via Kronecker products of the *factors*
- \blacktriangleright for matrix multiplication with dimension n , $\mathcal{T}^{(n)} \otimes \mathcal{T}^{(n)}$ defines the tensor for multiplication of matrices with dimension n^2
- \blacktriangleright for convolution of vectors with dimension n , $\mathcal{T}^{(n)} \otimes \mathcal{T}^{(n)}$ defines a 2D *convolution (to which a 1D convolution of size equal to or within a constant of* n ² *can be reduced)*
- \blacktriangleright for symmetric tensor contractions, $\mathcal{T}^{(n)} \otimes \mathcal{T}^{(n)}$ defines the problem of *contracting two partially symmetric tensors (with two groups of symmetric modes)*