CS 598 EVS: Tensor Computations Tensor Networks

Edgar Solomonik

University of Illinois, Urbana-Champaign

Tensor Networks

Tensor network methods seek to approximately compute quantities involving high-order tensors, by making use of their decompositions

Tensor network methods are often employed in problems where the tensor order varies with problem size

Tensor Representation of Quantum States

An *n*-qubit state can be represented by an order *n* amplitude tensor $\mathcal{T} \in \mathbb{C}^{2 \times \cdots \times 2}$

Hamiltonians

Quantum states and their evolution are described by Hamiltonians

Time-Evolution of Quantum States

The Schrödinger equation perscribes a time-evolution for a quantum state given a Hamiltonian

 If *H* is a local Hamiltonian, *Trotterization* provides a method for time-evolution

Time-Evolution of a Matrix Product State (MPS)

• To simulate time-evolution $|\psi(t)\rangle$ from a product state $|\psi(0)\rangle$, we can approximate each $|\psi(j\tau + \tau)\rangle = e^{-iH\tau} |\psi(j\tau)\rangle$ as a matrix product state

Hamiltonians as Matrix Product Operators (MPOs)

A matrix product operator (MPO) is a tensor-train decomposition where every factor tensor is assigned a pair of modes of the original tensor

Hamiltonians as Matrix Product Operators (MPOs)

 Hamiltonians describing quantum systems can typically be represented in an MPO format with low bond dimension

Generation of Efficient MPO Representations of Hamiltonians

 More sophisticated ways of embedding a local Hamiltonian into an MPO yield lower bond dimension

Density Matrix Renormalization Group (DMRG)

 DMRG [S. White, 1992] is an alternating optimization scheme to approximate by an MPS the ground state (lowest eigenvector) of a Hamiltonian described by an MPO

DMRG Algorithm Description

A sweep of the DMRG algorithm updates all factor tensors in the MPS

Cost Analysis of DMRG

Often the maximum bond dimension of the MPS (R) exceeds the MPO bond dimension significantly, and while each subproblem finds an eigenvector of an O(R²)-by-O(R²) matrix, the optimization of each site in DMRG generally has cost O(R³)

Sources of Error in Tensor Network Calculations

 Tensor network optimization algorithms perform approximations that are local to a few tensor factors

Perturbation Analysis of Tensor Networks

Suppose we perturb a factor tensor of an tensor network by $\delta \mathcal{U}$, with $\|\delta \mathcal{U}\|_F / \|\mathcal{U}\|_F < \epsilon$, what is the magnitude of the error in the tensor represented by the tensor network $\delta \mathcal{T} = \mathcal{T}(\mathcal{U}) - \mathcal{T}(\mathcal{U} + \delta \mathcal{U})$?

Environment Tensor and Jacobian Matrix

Diagram from [Y. Zhang and E.S., 2020]

Canonical Forms

A tensor network is in a *canonical form* w.r.t. factor tensor *U* if the columns of *J*^(*T*)(*U*) are orthonormal, i.e., κ(*J*^(*T*)(*U*)) = 1

Canonical Forms in DMRG

The DMRG algorithm maintains an appropriate canonical form for all local computations

Tensor Networks beyond 1D

An MPS is efficiently contractable and easy to put into canonical form, but other tensor networks often provide more desirable representations