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Tensor Networks
§ Tensor network methods seek to approximately compute quantities involving

high-order tensors, by making use of their decompositions

§ Tensor network methods are often employed in problems where the tensor
order varies with problem size



Tensor Representation of Quantum States
§ An n-qubit state can be represented by an order n amplitude tensor
T P C2ˆ¨¨¨ˆ2



Hamiltonians
§ Quantum states and their evolution are described by Hamiltonians



Time-Evolution of Quantum States
§ The Schrödinger equation perscribes a time-evolution for a quantum state

given a Hamiltonian

§ If H is a local Hamiltonian, Trotterization provides a method for
time-evolution



Time-Evolution of a Matrix Product State (MPS)
§ To simulate time-evolution |ψptqy from a product state |ψp0qy, we can

approximate each |ψpjτ ` τqy “ e´iHτ |ψpjτqy as a matrix product state



Hamiltonians as Matrix Product Operators (MPOs)
§ A matrix product operator (MPO) is a tensor-train decomposition where

every factor tensor is assigned a pair of modes of the original tensor



Hamiltonians as Matrix Product Operators (MPOs)
§ Hamiltonians describing quantum systems can typically be represented in an

MPO format with low bond dimension



Generation of Efficient MPO Representations of Hamiltonians
§ More sophisticated ways of embedding a local Hamiltonian into an MPO yield

lower bond dimension



Density Matrix Renormalization Group (DMRG)
§ DMRG [S. White, 1992] is an alternating optimization scheme to approximate

by an MPS the ground state (lowest eigenvector) of a Hamiltonian described
by an MPO

H =Ψ =

Diagram from [R. Levy, E.S., and B. Clark, 2020]



DMRG Algorithm Description
§ A sweep of the DMRG algorithm updates all factor tensors in the MPS



Cost Analysis of DMRG
§ Often the maximum bond dimension of the MPS (R) exceeds the MPO bond

dimension significantly, and while each subproblem finds an eigenvector of
an OpR2q-by-OpR2q matrix, the optimization of each site in DMRG generally
has cost OpR3q



Sources of Error in Tensor Network Calculations
§ Tensor network optimization algorithms perform approximations that are

local to a few tensor factors



Perturbation Analysis of Tensor Networks
§ Suppose we perturb a factor tensor of an tensor network by δU , with

}δU}F {}U}F ă ϵ, what is the magnitude of the error in the tensor
represented by the tensor network δT “ T pUq ´ T pU ` δUq?



Environment Tensor and Jacobian Matrix

Diagram from [Y. Zhang and E.S., 2020]



Canonical Forms
§ A tensor network is in a canonical form w.r.t. factor tensor U if the columns

of J pT qpUq are orthonormal, i.e., κpJ pT qpUqq “ 1



Canonical Forms in DMRG
§ The DMRG algorithm maintains an appropraite canonical form for all local

computations



Tensor Networks beyond 1D
§ An MPS is efficiently contractable and easy to put into canonical form, but

other tensor networks often provide more desirable representations
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