CS 598 EVS: Tensor Computations Tensor Eigenvalues

Edgar Solomonik

University of Illinois, Urbana-Champaign

Matrix Eigenvalues

- The eigenvalue and singular value decompositions of matrices enable not only low-rank approximation (which we can get for tensors via decomposition), but also describe important properties of the matrix M and associated linear function $f^{(M)}(x) = Mx$
 - Eigenvalues and eigenvectors can be used to characterize eigenfunctions of differential operators
 - Eigenvalues describe powers of the matrix and its limiting behavior

$$M = XDX^{-1} \Rightarrow M^2 = XD^2X^{-1}$$

if there is a unique largest eigenvalue λ with associated left/right eigenvectors are \pmb{x}, \pmb{y} then

$$\lim_{k\to\infty} \boldsymbol{M}^k / \|\boldsymbol{M}^{k-1}\| = \lambda \boldsymbol{x} \boldsymbol{y}$$

 They can be used to find stationary states of statistical processes and to find low-cut partitions in graphs

Tensor Eigenvalues

- Tensor eigenvalues and singular values can be defined based on the function $f^{(T)}$ by analogy from the role of matrix eigenvalues on $f^{(M)}$
 - Matrix eigenpairs (λ, x) satisfy $f^{(M)}(x) = \lambda x$, while for an order d symmetric tensor, we may define^{1,2}

$$\underbrace{f^{(\mathcal{T})}(x,\ldots,x)=\lambda x}_{\textbf{Z-eigenpair}}\quad \underbrace{f^{(\mathcal{T})}(x,\ldots,x)=\lambda x^{d-1}}_{\textbf{H-eigenpair}}\quad \underbrace{f^{(\mathcal{T})}(x,\ldots,x)=\lambda x^{p-1}}_{l^p\text{-eigenpair}}$$

where $oldsymbol{x}^p = [x_1^p \dots x_n^p]^T$

- For matrices, Z-eigenpairs (l^p -eigenpairs with p = 1) and H-eigenpairs (l^p -eigenpairs with p = d 1) are the same
- Singular value/vector pairs can be defined by a tuple $(\sigma, x_1, \ldots, x_d)$ that satisfies d equations like $f^{(T)}(x_2, \ldots, x_d) = \sigma x_1^p$, e.g., for d = 3, p = 1,

$$oldsymbol{T}_{(1)}(oldsymbol{x}_2\otimesoldsymbol{x}_3)=\sigmaoldsymbol{x}_1, \quad oldsymbol{T}_{(2)}(oldsymbol{x}_1\otimesoldsymbol{x}_3)=\sigmaoldsymbol{x}_2, \quad oldsymbol{T}_{(3)}(oldsymbol{x}_1\otimesoldsymbol{x}_2)=\sigmaoldsymbol{x}_3$$

¹Liqun Qi, "Eigenvalues of a Real Supersymmetric Tensor", 2005

²Lek-Heng Lim, "Singular Values and Eigenvalues of Tensors: A Variational Approach", 2005

Matrix Eigenvalues and Critical Points

- The eigenvalues/eigenvectors of a matrix are the critical values/points of its Rayleigh quotient³
 - The Lagrangian function of $f(x) = x^T A x$ subject to $\|x\|_2^2 = \|x\|_2 \|x\|_2 = 1$ is

$$\mathcal{L}(\boldsymbol{x}, \lambda) = \boldsymbol{x}^T \boldsymbol{A} \boldsymbol{x} - \lambda (\|\boldsymbol{x}\|_2^2 - 1)$$

• The first-order optimality condition are $\| m{x} \|_2 = 1$ and

$$rac{d\mathcal{L}}{doldsymbol{x}}(oldsymbol{x},\lambda) = oldsymbol{0} \quad \Rightarrow \quad oldsymbol{A}oldsymbol{x} = \lambdaoldsymbol{x}$$

- Singular vectors and singular values of matrices may be derived analogously
 - The Lagrangian function of $f({m x},{m y})={m x}^T{m A}{m y}$ subject to $\|{m x}\|_2\|{m y}\|_2=1$ is

$$\mathcal{L}(\boldsymbol{x}, \boldsymbol{y}, \sigma) = \boldsymbol{x}^T \boldsymbol{A} \boldsymbol{y} - \sigma(\|\boldsymbol{x}\|_2 \|\boldsymbol{y}\|_2 - 1)$$

• The first-order optimality conditions are $\|m{x}\|_2 \|m{y}\|_2 = 1$ and

$$\frac{d\mathcal{L}}{d\boldsymbol{x}}(\boldsymbol{x},\boldsymbol{y},\sigma) = \boldsymbol{0} \quad \Rightarrow \quad \frac{\boldsymbol{A}\boldsymbol{y}}{\|\boldsymbol{y}\|} = \frac{\sigma\boldsymbol{x}}{\|\boldsymbol{x}\|}, \qquad \frac{d\mathcal{L}}{d\boldsymbol{y}}(\boldsymbol{x},\boldsymbol{y},\sigma) = \boldsymbol{0} \quad \Rightarrow \quad \frac{\boldsymbol{A}\boldsymbol{x}}{\|\boldsymbol{x}\|} = \frac{\sigma\boldsymbol{y}}{\|\boldsymbol{y}\|}$$

³Lek-Heng Lim, "Singular Values and Eigenvalues of Tensors: A Variational Approach", 2005

Tensors Eigenvalues

- The Lagrangian approach to matrix eigenvalues generalizes naturally to symmetric tensors
 - The symmetric tensor is associated with a multilinear scalar-valued function $f^{(\mathcal{T})}(\boldsymbol{x}) = \sum_{i_1,...,i_d} t_{i_1,...,i_d} x_{i_1} \cdots x_{i_d}$ as well as the vector valued function $f^{(\mathcal{T})}(\boldsymbol{x}) = \sum_{i_1,...,i_{d-1}} t_{i_1,...,i_{d-1}} x_{i_1} \cdots x_{i_{d-1}} = \frac{1}{d} \nabla f^{(\mathcal{T})}(\boldsymbol{x})$
 - ▶ We consider its Lagrangian subject to a normalization condition ||x||_p^d = 1 (for matrices p = 2, so for order d tensors natural to pick either p = 2 or p = d),

$$\mathcal{L}(\boldsymbol{x}, \lambda) = f(\boldsymbol{x}) - \lambda(\|\boldsymbol{x}\|_p^d - 1)$$

• The first order optimality conditions for p = 2 is $\|\boldsymbol{x}\|_2 = 1$ and

$$rac{d\mathcal{L}}{doldsymbol{x}}(oldsymbol{x},\lambda) = oldsymbol{0} \quad \Rightarrow \quad oldsymbol{f}^{(oldsymbol{ au})}(oldsymbol{x}) = \lambda oldsymbol{x}$$

• The analogous first order optimality condition for p = d and even p is

$$rac{d\mathcal{L}}{dm{x}}(m{x},\lambda) = m{0} \quad \Rightarrow \quad m{f}^{(m{ au})}(m{x}) = \lambda m{x}^{d-1}$$

is scale invariant (if $(x*, \lambda)$ minimizes \mathcal{L} so does $(\alpha x^*, \lambda)$)

Tensor Singular Values and Singular Vectors

- Tensor singular values again can be viewed as critical points of the Lagrangian function of the multilinear map given by a tensor
 - An order *d* tensor is associated with a multilinear scalar-valued function

$$f^{(\boldsymbol{\mathcal{T}})}(\boldsymbol{x}^{(1)},\ldots,\boldsymbol{x}^{(d)}) = \sum_{i_1,\ldots,i_d} t_{i_1,\ldots,i_d} x_{i_1}^{(d)} \cdots x_{i_d}^{(d)}$$

as well as d vector valued functions

$$m{f}_i^{(m{ au})}(m{x}^{(1)},\ldots,\hat{m{x}}^{(i)},\ldots,m{x}^{(d)}) = rac{df^{(m{ au})}(m{x}^{(1)},\ldots,m{x}^{(d)})}{dm{x}^{(i)}}(m{x}^{(1)},\ldots,\hat{m{x}}^{(i)},\ldots,m{x}^{(d)})$$

e.g.,
$$f_1^{(\mathcal{T})}(x^{(2)}, x^{(3)}) = T_{(1)}(x^{(2)} \otimes x^{(3)})$$

• We consider its Lagrangian subject to a normalization condition $\|x_1\|_p \cdots \|x_d\|_p = 1$

$$\mathcal{L}(\boldsymbol{x}_1,\ldots,\boldsymbol{x}_d,\sigma) = f(\boldsymbol{x}_1,\ldots,\boldsymbol{x}_d) - \sigma(\|\boldsymbol{x}_1\|_p\cdots\|\boldsymbol{x}_d\|_p - 1)$$

• The first order optimality conditions for even p are, for all i in $\{1, \ldots, d\}$,

$$rac{d\mathcal{L}}{dm{x}_i}(m{x}_1,\ldots,m{x}_d,\sigma)=m{0} \quad \Rightarrow \quad m{f}_i^{(m{ au})}(m{x}_1,\ldots,\hat{m{x}}_i,\ldots,m{x}_d)=\sigmam{x}_i^p$$

Immediate Properties of Tensor Eigenvectors and Singular Vectors

- When the tensor order d is odd, H-eigenvectors (l^d-eigenvectors) and singular vectors must be defined with additional care
 - Let $\phi_p(x) = [sgn(x_1)|x_1|^p, \dots, sgn(x_n)|x_n|^p]^T$ then can generally write

$$abla \|oldsymbol{x}\|_p = \phi_{p-1}(oldsymbol{x}) / \|oldsymbol{x}\|_p^{p-1}$$

when p is even, $\phi_{p-1}({m x}) = {m x}^{p-1}$

• The eigenvalue equations can then be we written for general p as

$$rac{d\mathcal{L}}{doldsymbol{x}}(oldsymbol{x},\lambda) = oldsymbol{0} \quad \Rightarrow \quad oldsymbol{f}^{(oldsymbol{ au})}(oldsymbol{x}) = \lambda \phi_{p-1}(oldsymbol{x})$$

- The largest tensor singular value is the operator/spectral norm of the tensor
 - Recall we defined the operator norm of the tensor as

$$\|\boldsymbol{\mathcal{T}}\| = \max_{\boldsymbol{x}_1,\ldots,\boldsymbol{x}_d \in \mathbb{S}^{n-1}} |f^{\boldsymbol{\mathcal{T}}}(\boldsymbol{x}_1,\ldots,\boldsymbol{x}_d)|$$

where \mathbb{S}^{n-1} is the unit sphere (norm-1 vectors)

 This value corresponds to the largest l² tensor singular value, or in the symmetric case, the largest magnitude of any of the tensor Z-eigenvalues

Eigenvalues of Nonsymmetric Tensors

- For nonsymmetric matrices case, the Lagrangian approach used above cannot be used to describe the eigenvalues
 - The eigenvalues of a real nonsymmetric matrix may be complex
 - For tensors, we can still define the eigenvalue equations in a consistent way with respect to matrices,

$$\boldsymbol{f}_i^{(\boldsymbol{\mathcal{T}})}(\boldsymbol{x},\ldots,\boldsymbol{x}) = \lambda \phi_{p-1}(\boldsymbol{x})$$

so that λ, x are the mode-*i* an l^p -eigenpair

For matrices, the mode-1 and mode-2 l²-eigenvectors are the left/right eigenvectors

Connection Between Decomposition and Eigenvalues

- In the matrix-case, the largest magnitude eigenvalue and singular value may be associated with a rank-1 term that gives the best rank-1 decomposition of a matrix
 - ▶ For symmetric matrices, it suffices to consider the dominant eigenpair
 - For nonsymmetric matrices, a rank-1 truncated SVD gives the largest singular vector/value pair and associated rank-1 approximation
- In the tensor case, the rank-1 approximation problem corresponds to a maximization problem⁴
 - \blacktriangleright Given a nonsymmetric tensor ${\mathcal T}$ the rank-1 tensor decomposition objective is

$$\min_{\boldsymbol{u}^{(1)},\ldots,\boldsymbol{u}^{(d)}\in\mathbb{S}^{n-1}}\|\boldsymbol{\mathcal{T}}-\sigma\boldsymbol{u}^{(1)}\otimes\cdots\otimes\boldsymbol{u}^{(d)}\|_F^2$$

ullet The problem is equivalent to the maximum l^2 -singular value problem for ${oldsymbol {\mathcal T}}$

$$\max_{\boldsymbol{u}^{(1)},\ldots,\boldsymbol{u}^{(d)}\in\mathbb{S}^{n-1}}\sigma\quad \text{s.t.}\quad \forall_i \ \boldsymbol{f}_i^{(\boldsymbol{\mathcal{T}})}(\boldsymbol{u}^{(1)},\ldots,\hat{\boldsymbol{u}}^{(i)},\ldots,\boldsymbol{u}^{(d)})=\sigma\boldsymbol{u}^{(i)},$$

⁴L. De Lathauwer, B. De Moor, and J. Vandewalle, "On the best rank-1 and rank- $(R_1, R_2, ..., R_n)$ approximation of higher-order tensors", 2000

Derivation of Equivalence

- The singular value problem can be derived from decomposition via the method of Lagrange multipliers
 - In general, consider the Lagrangian function

$$\mathcal{L}(\boldsymbol{u}^{(1)},\ldots,\boldsymbol{u}^{(d)},\sigma,\boldsymbol{\lambda}) = \|\boldsymbol{\mathcal{T}} - \sigma\boldsymbol{u}^{(1)} \otimes \cdots \otimes \boldsymbol{u}^{(d)}\|_{F}^{2} + \sum_{i} \lambda_{i} (\sum_{j} (\|\boldsymbol{u}_{j}^{(i)}\|_{2}^{2} - 1))$$

For order 3, we have

 $\mathcal{L}(\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}, \sigma, \boldsymbol{\lambda}) = \|\boldsymbol{\mathcal{T}} - \sigma \boldsymbol{u} \otimes \boldsymbol{v} \otimes \boldsymbol{w}\|_F^2 + \lambda_1 (\boldsymbol{u}^T \boldsymbol{u} - 1) + \lambda_2 (\boldsymbol{v}^T \boldsymbol{v} - 1) + \lambda_3 (\boldsymbol{w}^T \boldsymbol{w} - 1)$

1

The optimality conditions give

$$\begin{aligned} \frac{d\mathcal{L}}{d\lambda} &= \mathbf{0} \quad \Rightarrow \quad \mathbf{u}^T \mathbf{u} = 1, \quad \mathbf{v}^T \mathbf{v} = 1, \quad \mathbf{w}^T \mathbf{w} = \\ \frac{d\mathcal{L}}{d\sigma} &= \mathbf{0} \quad \Rightarrow \quad f^{(\mathcal{T})}(\mathbf{u}, \mathbf{v}, \mathbf{w}) = \sigma \\ \frac{d\mathcal{L}}{d\mathbf{u}} &= \mathbf{0} \quad \Rightarrow \quad \sigma \mathbf{f}_1^{(\mathcal{T})}(\mathbf{v}, \mathbf{w}) = (\sigma^2 + \lambda_1) \mathbf{u} \end{aligned}$$

and similar for $\frac{d\mathcal{L}}{d\boldsymbol{v}}$, $\frac{d\mathcal{L}}{d\boldsymbol{w}}$. Premultiplying the last condition by \boldsymbol{u}^T , gives the second modulo λ_1 , so $\lambda_1 = 0$, giving the singular value equation $\boldsymbol{f}_1^{(\mathcal{T})}(\boldsymbol{v}, \boldsymbol{w}) = \sigma \boldsymbol{u}$.

Hardness of Eigenvalue Computation

- Like rank-1 approximation, computing eigenvalues of singular values of a tensor is NP-hard, which can be demonstrated by considering the tensor bilinear feasibility problem⁵
 - Restricting the tensor to be symmetric still leads to NP-hard problems, the largest singular vector will be the largest eigenvector a result of Banach⁶

$$\max_{\boldsymbol{x},\boldsymbol{y},\boldsymbol{z}\in\mathbb{S}^{n-1}} f^{(\boldsymbol{\mathcal{T}})}(\boldsymbol{x},\boldsymbol{y},\boldsymbol{z}) = \max_{\boldsymbol{x}\in\mathbb{S}^{n-1}} f^{(\boldsymbol{\mathcal{T}})}(\boldsymbol{x},\boldsymbol{x},\boldsymbol{x})$$

• The tensor bilinear feasibility problem associated with an order 3 tensor ${\cal T}$ is defined by the set of equations

$$f_1^{(\mathcal{T})}(v,w) = \mathbf{0}, \quad f_2^{(\mathcal{T})}(u,w) = \mathbf{0}, \quad f_3^{(\mathcal{T})}(u,v) = \mathbf{0}$$

where we seek solutions $oldsymbol{u}, oldsymbol{v}, oldsymbol{w}
eq \mathbf{0}$

• This problem is a special case of the l^p singular value problem for any choice of p with $\sigma = 0$

⁵C.J. Hillar and L.-H. Lim, "Most tensor problems are NP-hard", 2013 ⁶S. Banach. "On homogeneous polynomials in L^2 ", 1938

Hardness of Eigenvalue Computation

- NP-hardness of the tensor bilinear feasibility problem can be demonstrated by reduction from 3-colorability
 - The 3-coloring problem seeks to find (if possible) an assignment of one of 3 colors to each vertex of a graph that is different from the color of any of its neighbors
 - We define an optimization problem over a set of variables $x \in \mathbb{C}^n$ that describe the color (each will take on a power of the third root of unity), as well as auxiliary variables $y \in \mathbb{C}^n, z \in \mathbb{C}$, then define the bilinear equations

$$\forall i \in \{1, \dots, n\}, \quad x_i y_i - z^2 = 0, \quad y_i z - x^2 = 0, \quad x_i z - y_i^2 = 0$$
$$\forall i \in \{1, \dots, n\}, \quad \sum_{\substack{(i,j) \in E \\ \underbrace{x_i^3 - x_j^3 \\ x_i - x_j}}} \underbrace{x_i^2 + x_i x_j + x_j^2}_{\underbrace{x_i^3 - x_j^3 \\ x_i - x_j}} = 0$$

- Assume (normalize) so that z = 1, then the first set of equations implies $y_i = 1/x_i$ and further $x_i^3 = 1$, so labels are cubic roots of unity
- For the second set of equations, we then must have $x_i \neq x_j$ if $(i, j) \in E$

Power Method for Singular Value Computation

- The high-order power method (HOPM) can be used to compute the largest singular value⁷
 - The algorithm updates factors in an alternating manner until convergence, with the ith factor matrix updated as

1.
$$\boldsymbol{v}^{(i)} = \boldsymbol{f}_i^{(\boldsymbol{T})}(\boldsymbol{u}^{(1)}, \dots, \hat{\boldsymbol{u}}^{(i)}, \dots, \boldsymbol{u}^{(d)}),$$

2. $\sigma = \|\boldsymbol{v}^{(i)}\|_2$
3. $\boldsymbol{u}^{(i)}_{\text{new}} = \boldsymbol{v}^{(i)}/\sigma$

- The algorithm can be derived from the Lagrangian and converges to a local minimum
- Effective initialization can be achieved by HOSVD and the algorithm is equivalent to the rank-1 version of the HOOI procedure

⁷L. De Lathauwer, B. De Moor, and J. Vandewalle, "On the best rank-1 and rank- $(R_1, R_2, ..., R_n)$ approximation of higher-order tensors", 2000

Power Method for Symmetric Eigenvalue Problems

- The HOPM algorithm can be adapted to symmetric tensors
 - The aforementioned Banach's polynomial maximization theorem implies HOPM will converge to symmetric solution even if intermediate results are nonsymmetric
 - If symmetry is enforced on the iterates, so that

$$oldsymbol{v} = oldsymbol{f}^{(oldsymbol{\mathcal{T}})}(oldsymbol{u}) = oldsymbol{f}^{(oldsymbol{\mathcal{T}})}_i(oldsymbol{u},\ldots,oldsymbol{u}), \quad oldsymbol{u}^{(extsf{new})} = oldsymbol{v}/\|oldsymbol{v}\|,$$

the algorithm is no longer guaranteed to converge (it does if the tensor order is even and the underlying function is convex)

• The shifted symmetric HOPM method⁸ alleviates this problem and enables convergence to other eigenvalues by adding a shift so as to minimize $f^{(\mathcal{T})}(u) + \alpha(u^T u)^{d/2}$ for order d tensor \mathcal{T} , yielding to updates such as

$$oldsymbol{v} = oldsymbol{f}^{(oldsymbol{\mathcal{T}})}(oldsymbol{u}) + lpha oldsymbol{u}, \quad oldsymbol{u}^{(\textit{new})} = oldsymbol{v} / \|oldsymbol{v}\|,$$

⁸T.G. Kolda and J.R. Mayo, "Shifted Power Method for Computing Tensor Eigenpairs", 2011

Perron-Frobenius Theorem for Tensor Eigenvalues

- The Perron-Frobenius theorem states that positive matrices have a unique real eigenvalue and the associated eigenvector is positive
 - Can be extended to nonnegative matrices so long as matrix in not reducible, i.e., cannot be put into the form

$$oldsymbol{P} oldsymbol{A} oldsymbol{P}^{-1} = egin{bmatrix} oldsymbol{E} & oldsymbol{F} \ oldsymbol{0} & oldsymbol{G} \end{bmatrix}$$

where P is a permutation matrix and G has at least 1 row

- This theorem is prominent in the study of nonsymmetric matrices
- Its applications include analysis of stochastic processes and algebraic graph theory
- Tensor eigenvalues satisfy a generalized Perron-Frobenius theorem
 - If tensor is positive, the eigenvector with the largest eigenvalue is positive
 - A nonnegative order d tensor is irreducible if there is no d-dimensional blocking into 2^d blocks that yields an off-diagonal zero block
 - For further properties, see LH Lim, "Singular Values and Eigenvalues of Tensors: A Variational Approach", 2005 and Q Yang, Y Yang, "Further results for Perron–Frobenius theorem for nonnegative tensors II", 2011

Tensor Eigenvalues and Hypergraphs

- Matrix eigenvalues are prominent in algebraic graph theory
 - For an unweighted graph we typically consider a binary adjacency matrix A or the Laplacian matrix D A where D is a diagonal degree matrix
 - The eigenvector with the second smallest eigenvalue can be used to find a partitioning of verticies with a provably small cut value
 - Clustering can be done via constrained low-rank approximations methods
- Tensor eigenvalues can be used to understand partitioning/clustering properties of uniform hypergraphs⁹
 - A uniform hypergraph H = (V, E) is described by a set of vertices V and a set of hyperedges E, each of which is a subset of r vertices in E
 - Each hyperedge $(v_i, v_j, v_k) \in E$ may be associated with a tensor entry t_{ijk}
 - Laplacian-like choice of t_{ijk} yields symmetric and semidefinite tensor
 - The tensor must have a zero eigenvalue and the multiplicity of the zero eigenvalue is the number of components in the hypergraph
 - The second smallest eigenvalue lower bounds the minimum cut of H

⁹J. Chang, Y. Chen, L. Qi, H. Yan, "Hypergraph Clustering Using a New Laplacian Tensor with Applications in Image Processing", 2019