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Matrix Eigenvalues
§ The eigenvalue and singular value decompositions of matrices enable not

only low-rank approximation (which we can get for tensors via
decomposition), but also describe important properties of the matrix M and
associated linear function f pMqpxq “ Mx

§ Eigenvalues and eigenvectors can be used to characterize eigenfunctions of
differential operators

§ Eigenvalues describe powers of the matrix and its limiting behavior

M “ XDX´1 ñ M2 “ XD2X´1

if there is a unique largest eigenvalue λ with associated left/right eigenvectors
are x, y then

lim
kÑ8

Mk{}Mk´1} “ λxy

§ They can be used to find stationary states of statistical processes and to find
low-cut partitions in graphs



Tensor Eigenvalues
§ Tensor eigenvalues and singular values can be defined based on the function
f pT q by analogy from the role of matrix eigenvalues on f pMq

§ Matrix eigenpairs pλ, xq satisfy f pMqpxq “ λx, while for an order d symmetric
tensor, we may define1,2

f pT qpx, . . . ,xq “ λx
loooooooooooomoooooooooooon

Z-eigenpair

f pT qpx, . . . ,xq “ λxd´1
loooooooooooooomoooooooooooooon

H-eigenpair

f pT qpx, . . . ,xq “ λxp´1
loooooooooooooomoooooooooooooon

lp-eigenpair

where xp “ rxp
1 . . . x

p
nsT

§ For matrices, Z-eigenpairs (lp-eigenpairs with p “ 1) and H-eigenpairs
(lp-eigenpairs with p “ d ´ 1) are the same

§ Singular value/vector pairs can be defined by a tuple pσ,x1, . . . ,xdq that
satisfies d equations like f pT qpx2, . . . ,xdq “ σxp

1, e.g., for d “ 3, p “ 1,

Tp1qpx2 b x3q “ σx1, Tp2qpx1 b x3q “ σx2, Tp3qpx1 b x2q “ σx3

1Liqun Qi, “Eigenvalues of a Real Supersymmetric Tensor”, 2005
2Lek-Heng Lim, “Singular Values and Eigenvalues of Tensors: A Variational Approach”, 2005



Matrix Eigenvalues and Critical Points
§ The eigenvalues/eigenvectors of a matrix are the critical values/points of its

Rayleigh quotient3

§ The Lagrangian function of fpxq “ xTAx subject to }x}22 “ }x}2}x}2 “ 1 is

Lpx, λq “ xTAx ´ λp}x}22 ´ 1q

§ The first-order optimality conditions are }x}2 “ 1 and
dL
dx

px, λq “ 0 ñ Ax “ λx

§ Singular vectors and singular values of matrices may be derived analogously

§ The Lagrangian function of fpx,yq “ xTAy subject to }x}2}y}2 “ 1 is

Lpx,y, σq “ xTAy ´ σp}x}2}y}2 ´ 1q

§ The first-order optimality conditions are }x}2}y}2 “ 1 and
dL
dx

px,y, σq “ 0 ñ
Ay

}y}
“

σx

}x}
,

dL
dy

px,y, σq “ 0 ñ
Ax

}x}
“

σy

}y}

3Lek-Heng Lim, “Singular Values and Eigenvalues of Tensors: A Variational Approach”, 2005



Tensors Eigenvalues
§ The Lagrangian approach to matrix eigenvalues generalizes naturally to

symmetric tensors
§ The symmetric tensor is associated with a multilinear scalar-valued function

f pT qpxq “
ř

i1,...id
ti1,...,idxi1 ¨ ¨ ¨xid as well as the vector valued function

f pT qpxq “
ř

i1,...id´1
ti1,...,id´1

xi1 ¨ ¨ ¨xid´1
“ 1

d∇f pT qpxq

§ We consider its Lagrangian subject to a normalization condition }x}dp “ 1 (for
matrices p “ 2, so for order d tensors natural to pick either p “ 2 or p “ d),

Lpx, λq “ fpxq ´ λp}x}dp ´ 1q

§ The first order optimality conditions for p “ 2 is }x}2 “ 1 and
dL
dx

px, λq “ 0 ñ f pT qpxq “ λx

§ The analogous first order optimality condition for p “ d and even p is
dL
dx

px, λq “ 0 ñ f pT qpxq “ λxd´1

is scale invariant (if px˚, λq minimizes L so does pαx˚, λq)



Tensor Singular Values and Singular Vectors
§ Tensor singular values again can be viewed as critical points of the

Lagrangian function of the multilinear map given by a tensor
§ An order d tensor is associated with a multilinear scalar-valued function

f pT qpxp1q, . . . ,xpdqq “
ÿ

i1,...id

ti1,...,idx
pdq

i1
¨ ¨ ¨x

pdq

id

as well as d vector valued functions

f
pT q

i pxp1q, . . . , x̂piq, . . . ,xpdqq “
df pT qpxp1q, . . . ,xpdqq

dxpiq
pxp1q, . . . , x̂piq, . . . ,xpdqq

e.g., f pT q

1 pxp2q,xp3qq “ Tp1qpxp2q b xp3qq

§ We consider its Lagrangian subject to a normalization condition
}x1}p ¨ ¨ ¨ }xd}p “ 1

Lpx1, . . . ,xd, σq “ fpx1, . . . ,xdq ´ σp}x1}p ¨ ¨ ¨ }xd}p ´ 1q

§ The first order optimality conditions for even p are, for all i in t1, . . . , du,
dL
dxi

px1, . . . ,xd, σq “ 0 ñ f
pT q

i px1, . . . , x̂i, . . . ,xdq “ σxp
i



Immediate Properties of Tensor Eigenvectors and Singular Vectors
§ When the tensor order d is odd, H-eigenvectors (ld-eigenvectors) and

singular vectors must be defined with additional care
§ Let ϕppxq “ rsgnpx1q|x1|p, . . . , sgnpxnq|xn|psT then can generally write

∇}x}p “ ϕp´1pxq{}x}p´1
p

when p is even, ϕp´1pxq “ xp´1

§ The eigenvalue equations can then be we written for general p as
dL
dx

px, λq “ 0 ñ f pT qpxq “ λϕp´1pxq

§ The largest tensor singular value is the operator/spectral norm of the tensor

§ Recall we defined the operator norm of the tensor as

}T } “ max
x1,...,xdPSn´1

|fT px1, . . . ,xdq|

where Sn´1 is the unit sphere (norm-1 vectors)
§ This value corresponds to the largest l2 tensor singular value, or in the

symmetric case, the largest magnitude of any of the tensor Z-eigenvalues



Eigenvalues of Nonsymmetric Tensors

§ For nonsymmetric matrices case, the Lagrangian approach used above
cannot be used to describe the eigenvalues

§ The eigenvalues of a real nonsymmetric matrix may be complex
§ For tensors, we can still define the eigenvalue equations in a consistent way

with respect to matrices,

f
pT q

i px, . . . ,xq “ λϕp´1pxq

so that λ,x are the mode-i an lp-eigenpair
§ For matrices, the mode-1 and mode-2 l2-eigenvectors are the left/right

eigenvectors



Another View of Symmetric Tensor Eigenvalues

§ We can characterize eigenvectors with λ “ 0 by considering the polynomial
associated with a symmetric tensor, and similar with others.4

§ The zero eigenvalectors are defined by the singular points on the hypersurface
tx : f pT qpxq “ 0u (singular points correspond to points where the gradient of
f pT q vanishes).

§ The polynomial f pT qpxq ě 0 if all the eigenvalues of T are nonnegative
§ For a general λ P C, Z-eigenvectors correspond to singular points on the

hypersurface
tx : f pT qpxq ´ pλ{2qxTx ´ p1{d ´ 1{2qλ “ 0u

4Cartwright, Dustin, and Bernd Sturmfels. ”The number of eigenvalues of a tensor.” Linear
algebra and its applications 438.2 (2013): 942-952.



Number of eigenvalues in a tensor
§ The number of eigenvalues over C can be derived from the view of

polynomial equations
§ For any tensor T P Cnˆ¨¨¨ˆn of order d ě 3, the number of eigenvalues is either

infinite or at most (with multiplicity)

pd ´ 1qn ´ 1

d ´ 2

§ A generic (randomly chosen) tensor attains this bound and has all multiplicties
equal to one

§ Symmetric tensors may not have an infinite number of eigenvalues, so long as
eigenvectors are defined with the normalization xTx “ 1 (and not xHx “ 1),
excluding eigenvectors that may not be normalized

§ In the real case, eigenvalues need not be real
§ If T has real entries and either n or d is odd, it has a real eigenpair, otherwise it

may not



Example of Symmetric Tensor with Infinite Eigenvalues
§ Concretely, the following symmetric tensor has infinite eigenvalues if they

are normalized as xHx5

a111 “ 2, a122 “ a212 “ a221 “ a133 “ a313 “ a331 “ 1

and otherwise aijk “ 0

§ The eigenvalues of A are solutions to the equations

2x2
1 ` x2

2 ` x2
3 “ λx1, 2x1x2 “ λx2, 2x1x3 “ λx3,

§ For any α, x “ r1, iα, αs is an eigenvector of A
§ Then, x{}x}2 gives an eigenvector with eigenvalue 2{

a

1 ` 2|α|, while rescaling
as x{pxTxq gives eigenvectors that have eigenvalue 2 for any α

§ On the other hand, the latter normalization is not always possible, since for
x P Cn, we can have x ‰ 0, but xTx “ 0

5Cartwright, Dustin, and Bernd Sturmfels. ”The number of eigenvalues of a tensor.” Linear
algebra and its applications 438.2 (2013): 942-952.



Connection Between Decomposition and Eigenvalues
§ In the matrix-case, the largest magnitude eigenvalue and singular value may

be associated with a rank-1 term that gives the best rank-1 decomposition
of a matrix

§ For symmetric matrices, it suffices to consider the dominant eigenpair
§ For nonsymmetric matrices, a rank-1 truncated SVD gives the largest singular

vector/value pair and associated rank-1 approximation
§ In the tensor case, the rank-1 approximation problem corresponds to a

maximization problem6

§ Given a nonsymmetric tensor T the rank-1 tensor decomposition objective is

min
up1q,...,updqPSn´1

}T ´ σup1q b ¨ ¨ ¨ b updq}2F

§ The problem is equivalent to the maximum l2-singular value problem for T

max
up1q,...,updqPSn´1

σ s.t. @i f
pT q

i pup1q, . . . , ûpiq, . . . ,updqq “ σupiq,

6L. De Lathauwer, B. De Moor, and J. Vandewalle, “On the best rank-1 and rank-(R1, R2,..., Rn)
approximation of higher-order tensors”, 2000



Derivation of Equivalence
§ The singular value problem can be derived from decomposition via the

method of Lagrange multipliers
§ In general, consider the Lagrangian function

Lpup1q, . . . ,updq, σ,λq “ }T ´ σup1q b ¨ ¨ ¨ b updq}2F `
ÿ

i

λip
ÿ

j

pu
piq
j

Tu
piq
j ´ 1qq

§ For order 3, we have

Lpu,v,w, σ,λq “ }T ´σubvbw}2F `λ1puTu´1q`λ2pvTv´1q`λ3pwTw´1q

§ The optimality conditions give
dL
dλ

“ 0 ñ uTu “ 1, vTv “ 1, wTw “ 1

dL
dσ

“ 0 ñ f pT qpu,v,wq “ σ

dL
du

“ 0 ñ σf
pT q

1 pv,wq “ pσ2 ` λ1qu

and similar for dL
dv , dL

dw . Premultiplying the last condition by uT , gives the second
modulo λ1, so λ1 “ 0, giving the singular value equation f

pT q

1 pv,wq “ σu.



Hardness of Eigenvalue Computation
§ Like rank-1 approximation, computing eigenvalues of singular values of a

tensor is NP-hard, which can be demonstrated by considering the tensor
bilinear feasibility problem7

§ Restricting the tensor to be symmetric still leads to NP-hard problems, the
largest singular vector will be the largest eigenvector a result of Banach8

max
x,y,zPSn´1

f pT qpx,y, zq “ max
xPSn´1

f pT qpx,x,xq

§ The tensor bilinear feasibility problem associated with an order 3 tensor T is
defined by the set of equations

f
pT q

1 pv,wq “ 0, f
pT q

2 pu,wq “ 0, f
pT q

3 pu,vq “ 0

where we seek solutions u,v,w ‰ 0

§ This problem is a special case of the lp singular value problem for any choice of
p with σ “ 0, similar ideas (with a bit more technology) have been used to show
hardness of maximization / rank-1 approximation

7C.J. Hillar and L.-H. Lim, “Most tensor problems are NP-hard”, 2013
8S. Banach, “On homogeneous polynomials in L2”, 1938



Hardness of Eigenvalue Computation
§ NP-hardness of the tensor bilinear feasibility problem can be demonstrated

by reduction from 3-colorability
§ The 3-coloring problem seeks to find (if possible) an assignment of one of 3

colors to each vertex of a graph that is different from the color of any of its
neighbors

§ We define an set of equations over variables x P Cn that describe the color
(each will take on a power of the third root of unity), as well as auxiliary
variables y P Cn, z P C,

@i P t1, . . . , nu, xiyi ´ z2 “ 0, yiz ´ x2 “ 0, xiz ´ y2i “ 0

@i P t1, . . . , nu,
ÿ

pi,jqPE

x2
i ` xixj ` x2

j
loooooooomoooooooon

x3
i

´x3
j

xi´xj

“ 0

§ Assume (normalize) so that z “ 1, then the first set of equations implies
yi “ 1{xi and further x3

i “ 1, so labels are cubic roots of unity
§ For the second set of equations, we then must have xi ‰ xj if pi, jq P E



Power Method for Singular Value Computation

§ The high-order power method (HOPM) can be used to compute the largest
singular value9

§ The algorithm updates factors in an alternating manner until convergence, with
the ith factor matrix updated as

1. vpiq
“ f

pT q

i pup1q, . . . , ûpiq, . . . ,updq
q,

2. σ “ }vpiq
}2

3. u
piq
new “ vpiq

{σ

§ The algorithm can be derived from the Lagrangian and converges to a local
minimum

§ Effective initialization can be achieved by HOSVD and the algorithm is equivalent
to the rank-1 version of the HOOI procedure

9L. De Lathauwer, B. De Moor, and J. Vandewalle, “On the best rank-1 and rank-(R1, R2,..., Rn)
approximation of higher-order tensors”, 2000



Power Method for Symmetric Eigenvalue Problems
§ The HOPM algorithm can be adapted to symmetric tensors

§ The aforementioned Banach’s polynomial maximization theorem implies HOPM
will converge to symmetric solution even if intermediate results are
nonsymmetric

§ If symmetry is enforced on the iterates, so that

v “ f pT qpuq “ f
pT q

i pu, . . . ,uq, upnewq “ v{}v},

the algorithm is no longer guaranteed to converge (it does if the tensor order is
even and the underlying function is convex)

§ The shifted symmetric HOPM method10 alleviates this problem and enables
convergence to other eigenvalues by adding a shift so as to minimize
f pT qpuq ` αpuTuqd{2 for order d tensor T , yielding to updates such as

v “ f pT qpuq ` αu, upnewq “ v{}v},

10T.G. Kolda and J.R. Mayo, “Shifted Power Method for Computing Tensor Eigenpairs”, 2011



Newton-based Methods for Eigenvalue Computation
§ A state-of-the-art method of Newton-type method Newton Correction

Method (NCM) for computing real eigenvectors of a symmetric tensor11

§ The gradient and Hessian of the Lagrangian function
Lpx, λq “ f pT qpxq ´ dλ

2 pxTx ´ 1q, at a critical point (at which λ “ f pT qpxq)
satisfy

1

d
∇Lpx, λq “ f pT qpxq ´ f pT qpxqx

1

d
HLpx, λq “ pd ´ 1qTp1,2qpx b ¨ ¨ ¨ b xqf pT qpxq ´ f pT qpxqI

where T1,2 P Rn2
ˆnd´2 is a matricization with the first two modes of the tensor

enumerating matrix rows
§ To first-order in y “ x˚ ´ x, for eigenvector x˚, the eigenvector equations

reduce to
pHLpx, λq ´ d ¨ xf pT qpxqT qy “ ´∇Lpx, λq

§ The NCM method achieves quadratic convergence provided the Hessian at the
eigenvector is positive definite

11Jaffe, Ariel, Roi Weiss, and Boaz Nadler. ”Newton correction methods for computing real
eigenpairs of symmetric tensors.” SIAM Journal on Matrix Analysis and Applications 39.3 (2018).



Perron-Frobenius Theorem for Tensor Eigenvalues
§ The Perron-Frobenius theorem states that positive matrices have a unique

real eigenvalue and the associated eigenvector is positive
§ Can be extended to nonnegative matrices so long as matrix in not reducible, i.e.,

cannot be put into the form

PAP´1 “

„

E F
0 G

ȷ

where P is a permutation matrix and G has at least 1 row
§ This theorem is prominent in the study of nonsymmetric matrices
§ Its applications include analysis of stochastic processes and algebraic graph

theory
§ Tensor eigenvalues satisfy a generalized Perron-Frobenius theorem

§ If tensor is positive, the eigenvector with the largest eigenvalue is positive
§ A nonnegative order d tensor is irreducible if there is no d-dimensional blocking

into 2d blocks that yields an off-diagonal zero block
§ For further properties, see LH Lim, “Singular Values and Eigenvalues of Tensors:

A Variational Approach”, 2005 and Q Yang, Y Yang, “Further results for
Perron–Frobenius theorem for nonnegative tensors II”, 2011



Tensor Eigenvalues and Hypergraphs
§ Matrix eigenvalues are prominent in algebraic graph theory

§ For an unweighted graph we typically consider a binary adjacency matrix A or
the Laplacian matrix D ´ A where D is a diagonal degree matrix

§ The eigenvector with the second smallest eigenvalue can be used to find a
partitioning of verticies with a provably small cut value

§ Clustering can be done via constrained low-rank approximations methods
§ Tensor eigenvalues can be used to understand partitioning/clustering

properties of uniform hypergraphs12

§ A uniform hypergraph H “ pV,Eq is described by a set of vertices V and a set of
hyperedges E, each of which is a subset of r vertices in E

§ Each hyperedge pvi, vj , vkq P E may be associated with a tensor entry tijk
§ Laplacian-like choice of tijk yields symmetric and semidefinite tensor
§ The tensor must have a zero eigenvalue and the multiplicity of the zero

eigenvalue is the number of components in the hypergraph
§ The second smallest eigenvalue lower bounds the minimum cut of H

12J. Chang, Y. Chen, L. Qi, H. Yan, ”Hypergraph Clustering Using a New Laplacian Tensor with
Applications in Image Processing”, 2019
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