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Probabilistic Tensor Models

§ Consider a tensor T P Znˆnˆn of count data,

T “

M
ÿ

l“1

eil b ejl b ekl

where pil, jl, klq are random samples of a probability distribution ppi, j, kq1

§ The empirical estimate is ppi, j, kq « tijk{M , but a largeM needed for accuracy
§ Suppose there exists a latent random variable X P t1, . . . , Ru such that i, j, and
k are independent modulo the value of X, i.e., ppi, j, k|X “ lq “ ulpiqvlpjqwlpkq

§ This model is general, in particular R “ Opn2q, and has much fewer variables

1Huang, Kejun, and Nicholas D. Sidiropoulos. ”Kullback-Leibler principal component for tensors
is not NP-hard.” 2017 51st Asilomar Conference on Signals, Systems, and Computers. IEEE, 2017.



Optimization with KL divergence
§ Tensor decompositions with Kullback-Liebler (KL) divergence are suitable for
approximating ppi, j, kq

§ Seek the best CP approximation rrA,B,Css to T
§ The KL divergence of distributions ppxq and qpxq is given by the expectation in p

of log p´ log q

σpp, qq “

ż

ppxq logpppxq{qpxqqdx

§ The maximum likelihood model of ppi, j, kq “ tijk{M in terms of KL divergence is
then

min
u,v,wě0

´
ÿ

i,j,k

ppi, j, kq logpqpi, j, kqq,

qpi, j, kq “ q1pi, j, k|XqppXq, q1pi, j, k|X “ lq “ ulpiqvlpjqwlpkq

§ This corresponds to a nonnegative CP decomposition of T with air “ uiprq, etc.



Optimal Rank-1 Approximation with KL divergence
§ The rank-1 estimate with least KL divergence is easy to compute

§ Consider the objective function in the rank-1 case

ϕpu, v, wq “ ´
ÿ

i,j,k

tijk logpupiqvpjqwpkqq

“ ´
ÿ

i,j,k

tijkplog upiq ` log vpjq ` logwpkqq

“ ´
“

αT βT γT
‰

»

–

û
v̂
ŵ

fi

fl ,

αi “
ÿ

jk

tijk, βj “
ÿ

ik

tijk, γk “
ÿ

ij

tijk

ûi “ log upiq, v̂i “ log vpiq, ŵi “ logwpiq

§ This optimization problem is independent in u,v,w and with normalization
constraints the solution is upiq “ αi{}α}1, vpjq “ βj{}β}1, and wpkq “ γk{}γ}1,
which are the marginal distributions of ppi, j, kq “ tijk{M



Probability Estimation from Samples
§ Suppose we are interested in estimating a probability density ppx, y, zq from
samples pxk, yk, zkqmk“1, using tensor products of orthogonal basis functions2
ψ1, . . . ψn, so

ppx, y, zq “
ÿ

i,j,k

cijkψipxqψjpyqψkpzq

§ From orthogonality of the basis functions it follows that

cijk “

ż ż ż

ppx, y, zqψipxqψjpyqψkpzqdxdydz

§ Hence, we can get the expected value of C given the samples as

ErCs “
1

m

m
ÿ

k“1

uk b vk b wk, ukpiq “ ψipxkq, vkpiq “ ψipykq, wkpiq “ ψipzkq

§ Tensor decompositions may then be optimized relative to this emperical
distribution, and may be less sensitive to noise

2Tang, Xun, and Lexing Ying. ”Solving high-dimensional Fokker-Planck equation with functional
hierarchical tensor.” Journal of Computational Physics 511 (2024): 113110.
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