
CS 598: Provably E�cient Algorithms for Numerical and
Combinatorial Problems

Part 1: Background Numerical Analysis Tools

Edgar Solomonik

University of Illinois at Urbana-Champaign

Matrices and Tensors
I What is a matrix?

I What is a tensor?

Matrix and Tensor Decompositions
I What is a matrix factorization?

I What is a tensor decomposition?

Graphs and Hypergraphs
I What is a graph?

I What is a hypergraph?

Numerical and Combinatorial Problems
I What numerical problems will we look at?

I What combinatorial problems will we look at?

I What applications do these have?

Provably E�cient Algorithms
I What makes an algorithm provably e�cient?

Provably E�cient Parallel Schedules
I What makes a parallel schedule good

I What makes a parallel schedule for a given algorithm optimal?

Error Analysis
I Forward Error:

I Backward Error:

Conditioning
I Conditioning measures the worst-case sensitivity of the output with respect

to perturbations of the input
I The absolute condition number is a property of the problem, which measures

its sensitivity to perturbations in input

I The relative condition number considers relative perturbations in input and
output, so that

Rounding Error in Floating Point Operations

I Addition and Subtraction

Matrix Condition Number
I The matrix condition number κ(A) is the ratio between the max and min

distance from the surface to the center of the unit ball transformed by κ(A):

I The matrix condition number bounds the worst-case amplification of error in
a matrix-vector product:

Singular Value Decomposition
I The singular value decomposition (SVD)

I Condition number in terms of singular values

Linear Least Squares
I Find x? = argminx∈Rn ||Ax− b||2 where A ∈ Rm×n:

I Given the SVD A = UΣV T we have x? = V Σ†UT︸ ︷︷ ︸
A†

b, where Σ† contains the

reciprocal of all nonzeros in Σ, and more generally † denotes pseudoinverse:

Normal Equations
I Normal equations are given by solving ATAx = ATb:

I However, solving the normal equations is a more ill-conditioned problem
then the original least squares algorithm

Demo: Normal equations vs Pseudoinverse
Demo: Issues with the normal equations

https://relate.cs.illinois.edu/course/cs450-f18/f/demos/upload/03-least-squares/Normal equations vs Pseudoinverse.html
https://relate.cs.illinois.edu/course/cs450-f18/f/demos/upload/03-least-squares/Issues with the normal equations.html

Solving the Normal Equations
I If A is full-rank, then ATA is symmetric positive definite (SPD):

I Since ATA is SPD we can use Cholesky factorization, to factorize it and
solve linear systems:

QR Factorization
I If A is full-rank there exists an orthogonal matrix Q and a unique

upper-triangular matrix R with a positive diagonal such that A = QR

I A reduced QR factorization (unique part of general QR) is defined so that
Q ∈ Rm×n has orthonormal columns and R is square and upper-triangular

I We can solve the normal equations (and consequently the linear least
squares problem) via reduced QR as follows

Eigenvalue Decomposition
I If a matrix A is diagonalizable, it has an eigenvalue decomposition

I A and B are similar, if there exist Z such that A = ZBZ−1

Similarity of Matrices

matrix similarity reduced form
SPD

real symmetric

Hermitian
normal

real
diagonalizable

arbitrary

Rayleigh Quotient
I For any vector x that is close to an eigenvector, the Rayleigh quotient

provides an estimate of the associated eigenvalue of A:

Introduction to Krylov Subspace Methods
I Krylov subspace methods work with information contained in the n× k matrix

Kk =
[
x0 Ax0 · · · Ak−1x0

]

I A is similar to companion matrix C = K−1n AKn:

Krylov Subspaces
I Given QkRk = Kk, we obtain an orthonormal basis for the Krylov subspace,

Kk(A,x0) = span(Qk) = {p(A)x0 : deg(p) < k},
where p is any polynomial of degree less than k.

I The Krylov subspace includes the k − 1 approximate dominant eigenvectors
generated by k − 1 steps of power iteration:

Krylov Subspace Methods
I The k × k matrix Hk = QT

kAQk minimizes ||AQk −QkHk||2:

I Hk is Hessenberg, because the companion matrix Ck is Hessenberg:

Rayleigh-Ritz Procedure

I The eigenvalues/eigenvectors of Hk are the Ritz values/vectors:

I The Ritz vectors and values are the ideal approximations of the actual
eigenvalues and eigenvectors based on only Hk and Qk:

General Multidimensional Optimization
I Steepest descent: minimize f in the direction of the negative gradient:

I Given quadratic optimization problem f(x) = 1
2x

TAx+ cTx where A is
symmetric positive definite, the error ek = xk − x∗ satisfies

||ek+1||A =

I When su�ciently close to a local minima, general nonlinear optimization
problems are described by such an SPD quadratic problem.

I Convergence rate depends on the conditioning of A, since

Gradient Methods with Extrapolation
I We can improve the constant in the linear rate of convergence of steepest

descent by leveraging extrapolation methods, which consider two previous
iterates (maintain momentum in the direction xk − xk−1):

I The heavy ball method, which uses constant αk = α and βk = β, achieves
better convergence than steepest descent:

Conjugate Gradient Method
I The conjugate gradient method is capable of making the optimal (for a

quadratic objective) choice of αk and βk at each iteration of an extrapolation
method:

I Parallel tangents implementation of the method proceeds as follows

Krylov Optimization
I Conjugate Gradient finds the minimizer of f(x) = 1

2x
TAx+ cTx (which

satisfies optimality condition Ax = −c) within the Krylov subspace of A:

Newton’s Method
I Newton’s method in n dimensions is given by finding minima of
n-dimensional quadratic approximation using the gradient and Hessian of f :

Nonlinear Least Squares
I An important special case of multidimensional optimization is nonlinear least

squares, the problem of fitting a nonlinear function fx(t) so that fx(ti) ≈ yi:

I We can cast nonlinear least squares as an optimization problem to minimize
residual error and solve it by Newton’s method:

Gauss-Newton Method
I The Hessian for nonlinear least squares problems has the form:

I The Gauss-Newton method is Newton iteration with an approximate Hessian:

Tensors
I A tensor T ∈ Rn1×···×nd has

I Order d tensors represent d-dimensional arrays

Reshaping Tensors
When using tensors, it is often necessary to transition between high-order and
low-order representations of the same object

I Recall for a matrix A ∈ Rm×n its unfolding is given by

v = vec (A)⇒

I A tensor T ∈ Rn1×···×nd can be fully unfolded the same way

v = vec (T)⇒

I Often we also want to fold tensors into higher-order ones

I Generally, we can reshape (fold or unfold) any tensor

U = on1×···×nd
(V)⇒

Canonical Polyadic (CP) Decomposition
I A rank R CP decomposition of an s× s× s× s tensor is

I We can represent the CP using the following tensor diagram:

I Finding an approximate tensor decomposition corresponds to a nonlinear
least squares problem:

	Matrices, Tensors, and Graphs
	Motivation and Course Overview
	Numerical Error and Conditioning
	Least Squares Problems
	Eigenvalues and Eigenvectors
	Krylov Subspace Methods
	Numerical Optimization
	Tensor Decompositions

