CS 598: Provably Efficient Algorithms for Numerical and Combinatorial Problems

Part 1: Background Numerical Analysis Tools

Edgar Solomonik

University of Illinois at Urbana-Champaign

Matrices and Tensors

► What is a matrix?

What is a tensor?

Matrix and Tensor Decompositions

What is a matrix factorization?

What is a tensor decomposition?

Graphs and Hypergraphs

► What is a graph?

What is a hypergraph?

Numerical and Combinatorial Problems

▶ What numerical problems will we look at?

What combinatorial problems will we look at?

What applications do these have?

Provably Efficient Algorithms

What makes an algorithm provably efficient?

Provably Efficient Parallel Schedules

What makes a parallel schedule good

What makes a parallel schedule for a given algorithm optimal?

Error Analysis

► Forward Error:

► Backward Error:

Conditioning

- Conditioning measures the worst-case sensitivity of the output with respect to perturbations of the input
- ► The absolute condition number is a property of the problem, which measures its sensitivity to perturbations in input

► The relative condition number considers relative perturbations in input and output, so that

Rounding Error in Floating Point Operations

Addition and Subtraction

Matrix Condition Number

▶ The matrix condition number $\kappa(A)$ is the ratio between the max and min distance from the surface to the center of the unit ball transformed by $\kappa(A)$:

► The matrix condition number bounds the worst-case amplification of error in a matrix-vector product:

Singular Value Decomposition

► The singular value decomposition (SVD)

Condition number in terms of singular values

Linear Least Squares

lacksquare Find $m{x}^\star = \operatorname{argmin}_{m{x} \in \mathbb{R}^n} ||m{A}m{x} - m{b}||_2$ where $m{A} \in \mathbb{R}^{m imes n}$:

• Given the SVD $A = U\Sigma V^T$ we have $x^\star = \underbrace{V\Sigma^\dagger U^T}_{A^\dagger} b$, where Σ^\dagger contains the reciprocal of all nonzeros in Σ , and more generally \dagger denotes pseudoinverse:

Normal equations are given by solving $A^TAx = A^Tb$:

► However, solving the normal equations is a more ill-conditioned problem then the original least squares algorithm

Solving the Normal Equations

▶ If A is full-rank, then A^TA is symmetric positive definite (SPD):

▶ Since A^TA is SPD we can use Cholesky factorization, to factorize it and solve linear systems:

QR Factorization

▶ If A is full-rank there exists an orthogonal matrix Q and a unique upper-triangular matrix R with a positive diagonal such that A = QR

A reduced QR factorization (unique part of general QR) is defined so that $Q \in \mathbb{R}^{m \times n}$ has orthonormal columns and R is square and upper-triangular

▶ We can solve the normal equations (and consequently the linear least squares problem) via reduced QR as follows

Eigenvalue Decomposition

▶ If a matrix A is diagonalizable, it has an eigenvalue decomposition

• A and B are similar, if there exist Z such that $A = ZBZ^{-1}$

Similarity of Matrices

matrix	similarity	reduced form
SPD		
real symmetric		
Hermitian		
normal		
real		
diagonalizable		
arbitrary		

Rayleigh Quotient

► For any vector x that is close to an eigenvector, the *Rayleigh quotient* provides an estimate of the associated eigenvalue of A:

Introduction to Krylov Subspace Methods

 \blacktriangleright Krylov subspace methods work with information contained in the $n \times k$ matrix

$$oldsymbol{K}_k = egin{bmatrix} oldsymbol{x_0} & oldsymbol{Ax_0} & \cdots & oldsymbol{A}^{k-1}oldsymbol{x_0} \end{bmatrix}$$

• A is similar to *companion matrix* $C = K_n^{-1}AK_n$:

Krylov Subspaces

lacktriangle Given $oldsymbol{Q}_k oldsymbol{R}_k = oldsymbol{K}_k$, we obtain an orthonormal basis for the Krylov subspace,

$$\mathcal{K}_k(\boldsymbol{A}, \boldsymbol{x}_0) = span(\boldsymbol{Q}_k) = \{p(\boldsymbol{A})\boldsymbol{x}_0 : deg(p) < k\},\$$

where p is any polynomial of degree less than k.

The Krylov subspace includes the k-1 approximate dominant eigenvectors generated by k-1 steps of power iteration:

Krylov Subspace Methods

► The $k \times k$ matrix $H_k = Q_k^T A Q_k$ minimizes $||AQ_k - Q_k H_k||_2$:

 $ightharpoonup H_k$ is Hessenberg, because the companion matrix C_k is Hessenberg:

Rayleigh-Ritz Procedure

 \triangleright The eigenvalues/eigenvectors of H_k are the Ritz values/vectors:

▶ The Ritz vectors and values are the *ideal approximations* of the actual eigenvalues and eigenvectors based on only H_k and Q_k :

General Multidimensional Optimization

 \triangleright Steepest descent: minimize f in the direction of the negative gradient:

▶ Given quadratic optimization problem $f(x) = \frac{1}{2}x^TAx + c^Tx$ where A is symmetric positive definite, the error $e_k = x_k - x^*$ satisfies

$$||e_{k+1}||_{A} =$$

- When sufficiently close to a local minima, general nonlinear optimization problems are described by such an SPD quadratic problem.
- lacktriangle Convergence rate depends on the conditioning of A, since

Gradient Methods with Extrapolation

We can improve the constant in the linear rate of convergence of steepest descent by leveraging *extrapolation methods*, which consider two previous iterates (maintain *momentum* in the direction $x_k - x_{k-1}$):

The *heavy ball method*, which uses constant $\alpha_k = \alpha$ and $\beta_k = \beta$, achieves better convergence than steepest descent:

Conjugate Gradient Method

The *conjugate gradient method* is capable of making the optimal (for a quadratic objective) choice of α_k and β_k at each iteration of an extrapolation method:

Parallel tangents implementation of the method proceeds as follows

Krylov Optimization

Conjugate Gradient finds the minimizer of $f(x) = \frac{1}{2}x^TAx + c^Tx$ (which satisfies optimality condition Ax = -c) within the Krylov subspace of A:

Newton's Method

► Newton's method in *n* dimensions is given by finding minima of *n*-dimensional quadratic approximation using the gradient and Hessian of *f*:

Nonlinear Least Squares

An important special case of multidimensional optimization is *nonlinear least* squares, the problem of fitting a nonlinear function $f_x(t)$ so that $f_x(t_i) \approx y_i$:

We can cast nonlinear least squares as an optimization problem to minimize residual error and solve it by Newton's method:

Gauss-Newton Method

▶ The Hessian for nonlinear least squares problems has the form:

▶ The *Gauss-Newton* method is Newton iteration with an approximate Hessian:

Tensors

ightharpoonup A $tensor <math>\mathcal{T} \in \mathbb{R}^{n_1 \times \cdots \times n_d}$ has

lacktriangle Order d tensors represent d-dimensional arrays

Reshaping Tensors

When using tensors, it is often necessary to transition between high-order and low-order representations of the same object

▶ Recall for a matrix $A \in \mathbb{R}^{m \times n}$ its *unfolding* is given by

$$v = \text{vec}(A) \Rightarrow$$

lacktriangle A tensor $\mathcal{T} \in \mathbb{R}^{n_1 imes \dots imes n_d}$ can be fully unfolded the same way

$$\boldsymbol{v} = \operatorname{vec}\left(\boldsymbol{\mathcal{T}}\right) \Rightarrow$$

- Often we also want to fold tensors into higher-order ones
- Generally, we can reshape (fold or unfold) any tensor

$$\mathcal{U} = o_{n_1 \times \cdots \times n_d}(\mathcal{V}) \Rightarrow$$

Canonical Polyadic (CP) Decomposition

ightharpoonup A rank R CP decomposition of an $s \times s \times s \times s$ tensor is

We can represent the CP using the following tensor diagram:

Finding an approximate tensor decomposition corresponds to a nonlinear least squares problem: