
CS 598: Provably E�cient Algorithms for Numerical and
Combinatorial Problems

Part 1: Background Numerical Analysis Tools

Edgar Solomonik

University of Illinois at Urbana-Champaign

Matrices and Tensors
I What is a matrix?

I A collection of numbers arranged into an array of dimensions m× n, e.g.,
M ∈ Rm×n

I A linear operator f(x) = Mx

I A bilinear form xTMy

I What is a tensor?
I A collection of numbers arranged into an array of a particular order, with

dimensions l ×m× n× · · · , e.g., T ∈ Rl×m×n is order 3
I A multilinear operator z = f(x,y)

zi =
∑
j,k

tijkxjyk

I A multilinear form
∑

i,j,k tijkxiyjzk

Matrix and Tensor Decompositions
I What is a matrix factorization?

I A decomposition of a matrix in terms of other matrices with desirable properties
I M = QR = USV T = XDX−1 are examples of factorizations, where Q,U ,V

are orthogonal, R is upper-triangular, while S and D are diagonal
I Factorizations enable compression of M , solution to linear systems and least

squares problems with M , and computation of eigenvalues of M

I What is a tensor decomposition?
I A decomposition of a tensors in terms of other tensors with desirable properties
I For example, the canonical polyadic (CP) decomposition of an order 3 tensor is

tijk =

R∑
r=1

airbjrckr

I Factorizations enable compression of T , may uncover semantic structure of T ,
or may permit tensor network algorithms that represent T implicitly

Graphs and Hypergraphs

I What is a graph?
I A set of vertices and edges G = (V,E), with V = {1, . . . , n} and E ⊆ V × V

possibly with a weight function w : E → R
I An adjacency matrix A, where for each e = (i, j) ∈ E, aij = w(e)

I What is a hypergraph?

I A set of vertices and hyperedges G = (V,H), where each h ∈ H is a subset of
vertices, h ⊆ V , possibly with a weight function w for hyperedges

I A set of tensors T (1), · · · ,T (n) where T (k) is order k and stores hyperedges of
order k, e.g. if h = (i, j, k, l) ∈ H then T (4)

ijkl = w(h)

Numerical and Combinatorial Problems
I What numerical problems will we look at?

I Matrix factorizations via direct and approximate methods
I Iterative methods for linear systems and eigenvalue problems
I Discrete convolution
I Tensor decomposition, tensor completion, tensor networks, and associated

numerical optimization problems
I What combinatorial problems will we look at?

I Sorting and partitioning
I Graph problems: shortest paths, connectivity, minimal spanning tree

I What applications do these have?
I Data mining and data compression (matrix/tensor decomposition)
I Numerical methods for PDEs (linear systems and eigenvalue problems)
I Machine learning, e.g. collaborative filtering (tensor completion, convolution)
I Computational quantum chemistry and physics (tensor networks)
I Graph analytics

Provably E�cient Algorithms
I What makes an algorithm provably e�cient?

I Polynomial time with respect to size of input
I Low asymptotic worst-case execution time
I Low asymptotic average-case execution time
I Low (leading order) constant factors in execution time
I Numerical stability (small errors made during execution are not amplified)
I Approximation quality / error bounds (for inexact algorithms)
I The algorithm is parallelizable (low depth)
I The algorithm exhibits data-reuse / requires little communication
I The algorithm requires little synchronization between threads or processes
I The algorithm is cache oblivious
I The runtime of an implementation of the algorithm is lower than comparable

implementations of alternative algorithms on representative problem instances

Provably E�cient Parallel Schedules
I What makes a parallel schedule good

I Low parallel execution time given an infinite number of processors
I Low parallel execution time given any fixed number of processors
I Di�erent processors work on di�erent data
I Low communication and synchronization costs
I Few cache misses
I Low interprocessor communication volume
I Few messages communicated
I Low critical path costs

I What makes a parallel schedule for a given algorithm optimal?
I Its execution time with an infinite number of processors is equal to the depth of

the algorithm
I Its execution time decreases linearly with the number of processors until it

equals the depth
I Its communication and synchronization costs match communication lower

bounds for the algorithm

Error Analysis

I Forward Error:
Forward error is the computational error of an algorithm
I Absolute: f̂(x)− f(x)
I Relative: (f̂(x)− f(x))/f(x)

I Backward Error:
Backward error analysis enables us to measure computational error with
respect to data propagation error
I An algorithm is backward stable if its a solution to a nearby problem
I If the computed solution f̂(x) = f(x̂) then

backward error = x̂− x

I More precisely, we want the nearest x̂ to x with f̂(x) = f(x̂)

Conditioning
I Conditioning measures the worst-case sensitivity of the output with respect

to perturbations of the input
I The absolute condition number is a property of the problem, which measures

its sensitivity to perturbations in input
For scalar problem f with input x it is simply the derivative of f at x,

κabs(f) = lim
∆x→0

∣∣∣∣f(x+ ∆x)− f(x)

∆x

∣∣∣∣ =

∣∣∣∣ dfdx(x)

∣∣∣∣
When considering a space of inputs X it is κabs = maxx∈X

∣∣∣ dfdx(x)
∣∣∣

I The relative condition number considers relative perturbations in input and
output, so that

κ(f) = κrel(f) = max
x∈X

lim
∆x→0

∣∣∣∣(f(x+ ∆x)− f(x))/f(x)

∆x/x

∣∣∣∣ =
κabs(f)|x|
|f(x)|

Rounding Error in Floating Point Operations
I Addition and Subtraction

I Catastrophic cancellation occurs when the magnitude of the result is much
smaller than the magnitude of both operands

I Cancellation corresponds to losing significant digits, e.g.

3.1423× 105 − 3.1403× 105 = 2.0× 102

I Generally, we can bound the error incurred during addition of two real numbers
x, y in floating point (ignoring final rounding, which has relative error ε) as

|(x+ y)− (fl(x) + fl(y)|
|x+ y|

≤ ε(|x|+ |y|)
|x+ y|

by this we can also observe that the condition number of addition of x, y i.e.
f(x, y) = x+ y, is κ(f(x, y)) = (|x|+ |y|)/|x+ y|

I Consequently, when x+ y = 0 and x, y 6= 0 addition is ill-posed (has infinite
condition number) unless we restrict the space of possible inputs x, y

Matrix Condition Number

I The matrix condition number κ(A) is the ratio between the max and min
distance from the surface to the center of the unit ball transformed by κ(A):

I The max distance to center is given by the vector maximizing max||x||=1 ||Ax||2.
I The min distance to center is given by the vector minimizing

min||x||=1 ||Ax||2 = 1/(max||x||=1 ||A−1x||2).
I Thus, we have that κ(A) = ||A||2||A−1||2

I The matrix condition number bounds the worst-case amplification of error in
a matrix-vector product: Consider y + δy = A(x+ δx), assume ||x||2 = 1

I In the worst case, ||y||2 is minimized, that is ||y||2 = 1/||A−1||2
I In the worst case, ||δy||2 is maximized, that is ||δy||2 = ||A||2||δy||2
I So ||δy||2/||y||2 is at most κ(A)||δx||2/||x||2

Singular Value Decomposition
I The singular value decomposition (SVD)

We can express any matrix A as

A = UΣV T

where U and V are orthogonal, and Σ is square nonnegative and diagonal,

Σ =

σmax
. . .

σmin


Any matrix is diagonal when expressed as an operator mapping vectors from
a coordinate system given by V to a coordinate system given by UT .

I Condition number in terms of singular values

I We have that ‖A‖2 = σmax and if A−1 exists, ‖A−1‖2 = 1/σmin

I Consequently, κ(A) = σmax/σmin

Linear Least Squares
I Find x? = argminx∈Rn ||Ax− b||2 where A ∈ Rm×n:

Since m ≥ n, the minimizer generally does not attain a zero residual Ax− b.
We can rewrite the optimization problem constraint via

x? = argmin
x∈Rn

||Ax− b||22 = argmin
x∈Rn

[
(Ax− b)T (Ax− b)

]

I Given the SVD A = UΣV T we have x? = V Σ†UT︸ ︷︷ ︸
A†

b, where Σ† contains the

reciprocal of all nonzeros in Σ, and more generally † denotes pseudoinverse:
I The minimizer satisfies UΣV Tx? ∼= b and consequently also satisfies

Σy? ∼= d where y? = V Tx? and d = UT b.

I The minimizer of the reduced problem is y? = Σ†d, so yi = di/σi for
i ∈ {1, . . . , n} and yi = 0 for i ∈ {n+ 1, . . . ,m}.

Normal Equations
I Normal equations are given by solving ATAx = ATb:

If ATAx = ATb then

(UΣV T)TUΣV Tx = (UΣV T)Tb

ΣTΣV Tx = ΣTUTb

V Tx = (ΣTΣ)−1ΣTUTb = Σ†UTb

x = V Σ†UTb = x?

I However, solving the normal equations is a more ill-conditioned problem
then the original least squares algorithm
Generally we have κ(ATA) = κ(A)2 (the singular values of ATA are the
squares of those in A). Consequently, solving the least squares problem via
the normal equations may be unstable because it involves solving a problem
that has worse conditioning than the initial least squares problem.

Demo: Normal equations vs Pseudoinverse
Demo: Issues with the normal equations

https://relate.cs.illinois.edu/course/cs450-f18/f/demos/upload/03-least-squares/Normal equations vs Pseudoinverse.html
https://relate.cs.illinois.edu/course/cs450-f18/f/demos/upload/03-least-squares/Issues with the normal equations.html

Solving the Normal Equations

I If A is full-rank, then ATA is symmetric positive definite (SPD):
I Symmetry is easy to check (ATA)T = ATA.
I A being full-rank implies σmin > 0 and further if A = UΣV T we have

ATA = V TΣ2V

which implies that rows of V are the eigenvectors of ATA with eigenvalues Σ2

since ATAV T = V TΣ2.

I Since ATA is SPD we can use Cholesky factorization, to factorize it and
solve linear systems:

ATA = LLT

QR Factorization
I If A is full-rank there exists an orthogonal matrix Q and a unique

upper-triangular matrix R with a positive diagonal such that A = QR

I Given ATA = LLT , we can take R = LT and obtain Q = AL−T , since
L−1AT︸ ︷︷ ︸

QT

AL−T︸ ︷︷ ︸
Q

= I implies that Q has orthonormal columns.

I A reduced QR factorization (unique part of general QR) is defined so that
Q ∈ Rm×n has orthonormal columns and R is square and upper-triangular
A full QR factorization gives Q ∈ Rm×m and R ∈ Rm×n, but since R is upper
triangular, the latter m− n columns of Q are only constrained so as to keep
Q orthogonal. The reduced QR factorization is given by taking the first n
columns Q and Q̂ the upper-triangular block of R, R̂ giving A = Q̂R̂.

I We can solve the normal equations (and consequently the linear least
squares problem) via reduced QR as follows

ATAx = ATb ⇒ R̂T Q̂T Q̂︸ ︷︷ ︸
I

R̂x = R̂T Q̂Tb ⇒ R̂x = Q̂Tb

Eigenvalue Decomposition
I If a matrix A is diagonalizable, it has an eigenvalue decomposition

A = XDX−1

where X are the right eigenvectors, X−1 are the left eigenvectors and D are
eigenvalues

AX =
[
Ax1 · · ·Axn

]
= XD =

[
d11x1 · · · dnnxn

]
.

I If A is symmetric, its right and left singular vectors are the same, and
consequently are its eigenvectors.

I More generally, any normal matrix, AHA = AAH , has unitary eigenvectors.
I A and B are similar, if there exist Z such that A = ZBZ−1

I Normal matrices are unitarily similar (Z−1 = ZH) to diagonal matrices
I Symmetric real matrices are orthogonally similar (Z−1 = ZT) to real diagonal

matrices
I Hermitian matrices are unitarily similar to real diagonal matrices

Similarity of Matrices

matrix similarity reduced form
SPD orthogonal real positive diagonal

real symmetric orthogonal real tridiagonal
real diagonal

Hermitian unitary real diagonal
normal unitary diagonal

real orthogonal real Hessenberg
diagonalizable invertible diagonal

arbitrary unitary triangular
invertible bidiagonal

Rayleigh Quotient

I For any vector x that is close to an eigenvector, the Rayleigh quotient
provides an estimate of the associated eigenvalue of A:

ρA(x) =
xHAx

xHx
.

I If x is an eigenvector of A, then ρA(x) is the associated eigenvalue.
I Moreover, for y = Ax, the Rayleigh quotient is the best possible eigenvalue

estimate given x and y, as it is the solution α to xα ∼= y.

I The normal equations for this scalar-output least squares problem are (assuming
A is real),

xTxα = xTy ⇒ α =
xTy

xTx
=

xTAx

xTx
.

Introduction to Krylov Subspace Methods
I Krylov subspace methods work with information contained in the n× k matrix

Kk =
[
x0 Ax0 · · · Ak−1x0

]
We seek to best use the information from the matrix vector product results
(columns of Kk) to solve eigenvalue problems.

I A is similar to companion matrix C = K−1
n AKn:

Letting k(i)
n = Ai−1x, we observe that

AKn =
[
Ak

(1)
n · · · Ak

(n−1)
n Ak

(n)
n

]
=
[
k

(2)
n · · · k

(n)
n Ak

(n)
n

]
,

therefore premultiplying by K−1
m transforms the first n− 1 columns of AKn

into the last n− 1 columns of I,

K−1
n AKn =

[
K−1
n k

(2)
n · · · K−1

n k
(n)
n K−1

n Ak
(n)
n

]
=
[
e2 · · · en K−1

n Ak
(n)
n

]

Krylov Subspaces

I Given QkRk = Kk, we obtain an orthonormal basis for the Krylov subspace,

Kk(A,x0) = span(Qk) = {p(A)x0 : deg(p) < k},

where p is any polynomial of degree less than k.
I The Krylov subspace includes the k − 1 approximate dominant eigenvectors

generated by k − 1 steps of power iteration:
I The approximation obtained from k − 1 steps of power iteration starting from x0

is given by the Rayleigh-quotient of y = Akx0.
I This vector is within the Krylov subspace, y ∈ Kk(A,x0).
I Consequently, Krylov subspace methods will generally obtain strictly better

approximations of the dominant eigenpair than power iteration.

Krylov Subspace Methods

I The k × k matrix Hk = QT
kAQk minimizes ||AQk −QkHk||2:

The minimizer X for the linear least squares problem QkX ∼= AQk is (via the
normal equations) X = QT

kAQk = Hk.
I Hk is Hessenberg, because the companion matrix Ck is Hessenberg:

Hk = QT
kAQk = RkK

−1
k AKkR

−1
k = RkCkR

−1
k

is a product of three matrices: upper-triangular Rk, upper-Hessenberg Ck ,
and upper-triangular R−1

k , which results in upper-Hessenberg Hk.

Rayleigh-Ritz Procedure
I The eigenvalues/eigenvectors of Hk are the Ritz values/vectors:

Hk = XDX−1

eigenvalue approximations based on Ritz vectors X are given by QkX.
I The Ritz vectors and values are the ideal approximations of the actual

eigenvalues and eigenvectors based on only Hk and Qk:
Assuming A is a symmetric matrix with positive eigenvalues, the largest Ritz
value λmax(Hk) will be the maximum Rayleigh quotient of any vector in
Kk = span(Qk),

max
x∈span(Qk)

xTAx

xTx
= max

y 6=0

yTQT
kAQky

yTy
= max

y 6=0

yTHky

yTy
= λmax(Hk),

which is the best approximation to λmax(A) = maxx6=0
xTAx
xTx

available in Kk.
The quality of the approximation can also be shown to be optimal for other
eigenvalues/eigenvectors.

General Multidimensional Optimization
I Steepest descent: minimize f in the direction of the negative gradient:

xk+1 = xk − αk∇f(xk)

such that f(xk+1) = minαk
f(xk − αk∇f(xk)), i.e. perform a line search

(solve 1D optimization problem) in the direction of the negative gradient.
I Given quadratic optimization problem f(x) = 1

2x
TAx+ cTx where A is

symmetric positive definite, the error ek = xk − x∗ satisfies

||ek+1||A = eTk+1Aek+1 =
σmax(A)− σmin(A)

σmax(A) + σmin(A)
||ek||A

I When su�ciently close to a local minima, general nonlinear optimization
problems are described by such an SPD quadratic problem.

I Convergence rate depends on the conditioning of A, since

σmax(A)− σmin(A)

σmax(A) + σmin(A)
=
κ(A)− 1

κ(A) + 1
.

Gradient Methods with Extrapolation
I We can improve the constant in the linear rate of convergence of steepest

descent by leveraging extrapolation methods, which consider two previous
iterates (maintain momentum in the direction xk − xk−1):

xk+1 = xk − αk∇f(xk) + βk(xk − xk−1)

I The heavy ball method, which uses constant αk = α and βk = β, achieves
better convergence than steepest descent:

||ek+1||A =

√
κ(A)− 1√
κ(A) + 1

||ek||A

Nesterov’s gradient optimization method is another instance of an
extrapolation method that provides further improved optimality guarantees.

Conjugate Gradient Method
I The conjugate gradient method is capable of making the optimal (for a

quadratic objective) choice of αk and βk at each iteration of an extrapolation
method:

(αk, βk) = argmin
αk,βk

[
f
(
xk − αk∇f(xk) + βk(xk − xk−1)

)]
I For SPD quadratic programming problems, conjugate gradient is an optimal first

order method, converging in n iterations.
I It implicitly computes Lanczos iteration, searching along A-orthogonal

directions at each step.

I Parallel tangents implementation of the method proceeds as follows

1. Perform a step of steepest descent to generate x̂k from xk.
2. Generate xk+1 by minimizing over the line passing through xk−1 and x̂k.

The method is equivalent to CG for a quadratic objective function.

Krylov Optimization
I Conjugate Gradient finds the minimizer of f(x) = 1

2x
TAx+ cTx (which

satisfies optimality condition Ax = −c) within the Krylov subspace of A:
I It constructs Krylov subspace Kk(A, c) = span(c,Ac, . . . ,Ar−1c).
I At the kth step conjugate gradient yields iterate

xk = −||c||2QkT
−1
k e1,

where Qk is an orthogonal basis for Krylov subspace Kk(A, c) and
Tk = QT

kAQk.
I This choice of xk minimizes f(x) since

min
x∈Kk(A,c)

f(x) = min
y∈Rk

f(Qky)

= min
y∈Rk

yTQT
kAQky + cTQky

= min
y∈Rk

yTTky + ||c||2eT1 y

is minimized by y = −||c||2T−1k e1.

Newton’s Method
I Newton’s method in n dimensions is given by finding minima of
n-dimensional quadratic approximation using the gradient and Hessian of f :

f(xk + s) ≈ f̂(s) = f(xk) + sT∇f(xk) +
1

2
sTHf (xk)s.

The minima of this function can be determined by identifying critical points

0 = ∇f̂(s) = ∇f(xk) +Hf (xk)s,

thus to determine s we solve the linear system,

Hf (xk)s = −∇f(xk).

Assuming invertibility of the Hessian, we can write the Newton’s method
iteration as

xk+1 = xk −Hf (xk)
−1∇f(xk)︸ ︷︷ ︸
s

.

Quadratic convergence follows by equivalence to Newton’s method for solving
nonlinear system of optimality equations ∇f(x) = 0.

Nonlinear Least Squares
I An important special case of multidimensional optimization is nonlinear least

squares, the problem of fitting a nonlinear function fx(t) so that fx(ti) ≈ yi:
For example, consider fitting f[x1,x2](t) = x1 sin(x2t) so thatf[x1,x2](1.5)

f[x1,x2](1.9)

f[x1,x2](3.2)

 ≈
−1.2

4.5
7.3

 .
I We can cast nonlinear least squares as an optimization problem to minimize

residual error and solve it by Newton’s method:
Define residual vector function r(x) so that ri(x) = yi − fx(ti) and minimize

φ(x) =
1

2
||r(x)||22 =

1

2
r(x)Tr(x).

Now the gradient is ∇φ(x) = JTr (x)r(x) and the Hessian is

Hφ(x) = JTr (x)Jr(x) +

m∑
i=1

ri(x)Hri(x).

Gauss-Newton Method
I The Hessian for nonlinear least squares problems has the form:

Hφ(x) = JTr (x)Jr(x) +

m∑
i=1

ri(x)Hri(x).

The second term is small when the residual function r(x) is small, so
approximate

Hφ(x) ≈ Ĥφ(x) = JTr (x)Jr(x).

I The Gauss-Newton method is Newton iteration with an approximate Hessian:

xk+1 = xk − Ĥφ(xk)
−1∇f(xk) = xk − (JTr (xk)Jr(xk))

−1JTr (xk)r(xk).

Recognizing the normal equations, we interpret the Gauss-Newton method as
solving linear least squares problems Jr(xk)sk ∼= r(xk),xk+1 = xk + sk.

Tensors

I A tensor T ∈ Rn1×···×nd has

I Order d (i.e. d modes / indices)
I Dimensions n1-by-· · · -by-nd
I Elements ti1...id = ti where i ∈

⊗d
i=1{1, . . . , ni}

I Order d tensors represent d-dimensional arrays

I (d ≥ 3)-dimensional arrays are prevalent in scientific computing
I Regular grids, collections of matrices, multilinear operators
I Experimental data, visual/graphic data
I Higher-order derivatives and correlation

Reshaping Tensors
When using tensors, it is often necessary to transition between high-order and
low-order representations of the same object

I Recall for a matrix A ∈ Rm×n its unfolding is given by

v = vec (A)⇒ v ∈ Rmn, vi+jm = aij

I A tensor T ∈ Rn1×···×nd can be fully unfolded the same way

v = vec (T)⇒ v ∈ Rn1···nd , vi1+i2n1+i3n1n2+... = ti1i2i3...

I Often we also want to fold tensors into higher-order ones

I Generally, we can reshape (fold or unfold) any tensor

U = on1×···×nd
(V)⇒ U ∈ Rn1×···×nd , vec (U) = vec (V)

Canonical Polyadic (CP) Decomposition
I A rank R CP decomposition of an s× s× s× s tensor is

xijkl =

R∑
r=1

uirvjrwkrzlr

I We can represent the CP using the following tensor diagram:

I Finding an approximate tensor decomposition corresponds to a nonlinear
least squares problem:

f(U ,V ,W ,Z) =
∑
i,j,k,l

(
xijkl −

R∑
r=1

uirvjrwkrzlr︸ ︷︷ ︸
x̂ijkl

)2

which is the squared Frobenius norm error ‖X − X̂‖2F .

	Matrices, Tensors, and Graphs
	Motivation and Course Overview
	Numerical Error and Conditioning
	Least Squares Problems
	Eigenvalues and Eigenvectors
	Krylov Subspace Methods
	Numerical Optimization
	Tensor Decompositions

