CS 598: Provably Efficient Algorithms for Numerical and Combinatorial Problems

Part 2: Algorithm Representation

Edgar Solomonik

University of Illinois at Urbana-Champaign

Straight Line Programs

▶ Often, we want to quantify the efficiency of an algorithm that solves any problem of size n in f(n) iterations, i.e., it is a *straight line program*

The completed execution of a program for a particular problem may always be described by a straight line program

Algorithms as Directed Acyclic Graphs

► A directed acyclic graph (DAG) describes a straight line program in terms of elementwise operations (addition, multiplication, etc.)

Assuming an algorithm is a straight line program, we may ask questions regarding parallelism and communication cost

Schedules of an Algorithm

► A *schedule* assigns the vertices of a straight-line program to instructional units and maanages associated communication

Parameterization of Algorithms

Oftentimes, we may want to paramterize the algorithm (and not just the schedule) depending on the architecture

► An algorithm may also be designed to be *oblivious* to a parameter, i.e., to minimize execution time for any choice of a particular parameter

Matrix Multiplication as a DAG

Lets consider the matrix multiplication problem: compute C such that C=AB with $A,B,C\in\mathbb{R}^{n\times n}$

Loop-nest can be used to describe algorithm/DAG (for i, for j, for k, $c_{ij}^{(k)}=c_{ij}^{(k-1)}+a_{ik}b_{kj}$ with $c_{ij}^{(0)}=0$ and $c_{ij}=c_{ij}^{(n)}$)

Recursive formulation describes another algorithm/DAG

Family of Classical Matrix Multiplication Algorithms

The nested-loop and recursive formulations are two instances of a family of classical matrix multiplication algorithms

Can describe family of DAGs as a hypergraph

Surface Area to Volume Ratio in Hypergraphs

▶ We can analyze the hypergraph to determine communication cost bounds

► The *Loomis-Whitney* is a *volumetric inequality* that provides a way to bound expansion

Compression and Recomputation

 Our previous discussion of communication assumed that each hypergraph edge requires communication of a matrix entry

A method that computes bilinear products $a_{ik}b_{kj}$ may take arbitrary linear combinations of entries of A, B, or partial sums for C

Bilinear Algorithms

A bilinear algorithm (V. Pan, 1984) $\Lambda = ({m F}^{(A)}, {m F}^{(B)}, {m F}^{(C)})$ computes

$$c = F^{(C)}[(F^{(A)T}a) \odot (F^{(B)T}b)],$$

where a and b are inputs and \odot is the Hadamard (pointwise) product.

Bilinear Algorithms as Tensor Factorizations

▶ A bilinear algorithm corresponds to a CP tensor decomposition

For multiplication of $n \times n$ matrices, we can define a *matrix multiplication* tensor and consider algorithms with various bilinear rank

Strassen's Algorithm

$$\begin{array}{l} \text{Strassen's algorithm} \begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \cdot \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix} \\ M_1 = (A_{11} + A_{22}) \cdot (B_{11} + B_{22}) & C_{11} = M_1 + M_4 - M_5 + M_7 \\ M_2 = (A_{21} + A_{22}) \cdot B_{11} & C_{21} = M_2 + M_4 \\ M_3 = A_{11} \cdot (B_{12} - B_{22}) & C_{12} = M_3 + M_5 \\ M_4 = A_{22} \cdot (B_{21} - B_{11}) & C_{22} = M_1 - M_2 + M_3 + M_6 \\ M_5 = (A_{11} + A_{12}) \cdot B_{22} & \\ M_6 = (A_{21} - A_{11}) \cdot (B_{11} + B_{12}) & \\ M_7 = (A_{12} - A_{22}) \cdot (B_{21} + B_{22}) & \end{array}$$

By performing the nested calls recursively, Strassen's algorithm achieves cost,

Expansion in Bilinear Algorithms

► The communication cost of a bilinear algorithm depends on the amount of data needed to compute subsets of the bilinear products.

lacktriangle A bilinear algorithm Λ can be associated expansion bound $\mathcal{E}_{\Lambda}:\mathbb{N}^3\to\mathbb{N}$