CS 598: Provably Efficient Algorithms for Numerical and Combinatorial Problems

Part 2: Algorithm Representation

Edgar Solomonik

University of Illinois at Urbana-Champaign

Straight Line Programs

- ▶ Often, we want to quantify the efficiency of an algorithm that solves any problem of size n in f(n) iterations, i.e., it is a *straight line program*
 - Numerical algorithms often fit this form, including for matrix multiplication, convolution, matrix factorizations, direct solvers, k-iterations of an sparse iterative method
 - Programs that have branches or conditional loop bounds may not be described a straight line program
- ► The completed execution of a program for a particular problem may always be described by a straight line program
 - Ultimately a sequence of instructions are executed
 - These instructions may be independent and so can be reordered, thus we have a set of operations which need to be executed according to a partial order

Algorithms as Directed Acyclic Graphs

- A directed acyclic graph (DAG) describes a straight line program in terms of elementwise operations (addition, multiplication, etc.)
 - This DAG has a vertex for each scalar value input to or computed within the program
 - Computed values are vertices with in-degree one or two in the DAG
- Assuming an algorithm is a straight line program, we may ask questions regarding parallelism and communication cost
 - Depth of DAG gives lower bound on parallel execution time
 - Expansion properties describe communication cost

Schedules of an Algorithm

- ► A *schedule* assigns the vertices of a straight-line program to instructional units and maanages associated communication
 - Schedule depends on architectural model
 - Sequential with explicitly managed bounded fast memory (cache/register file), schedule needs to provide reads/writes/discards
 - Sequential with implicitly managed bounded fast memory (cache/register file) via a given caching protocol
 - Parallel shared memory with no fast memory (PRAM), variants regarding how to handle concurrent reads/writes to same locations
 - ▶ Distributed-memory parallel (BSP/ α - β), schedule may manage initial data layout, communication and synchronization

Parameterization of Algorithms

- Oftentimes, we may want to paramterize the algorithm (and not just the schedule) depending on the architecture
 - ► For example, we may use a flat reduction tree on a single processor as opposed to a binary reduction tree with many processors
 - Reorganization of DAG may minimize expansion with respect to a parameter controlling subset size (which may be correlated with fast memory size)
- An algorithm may also be designed to be oblivious to a parameter, i.e., to minimize execution time for any choice of a particular parameter
 - This notion is most important for fast memory (cache) size, with corresponding algorithms refered to as cache-oblivious
 - Other examples include network-oblivious algorithms

Matrix Multiplication as a DAG

Lets consider the matrix multiplication problem: compute C such that C=AB with $A,B,C\in\mathbb{R}^{n\times n}$

- Loop-nest can be used to describe algorithm/DAG (for i, for j, for k, $c_{ij}^{(k)}=c_{ij}^{(k-1)}+a_{ik}b_{kj}$ with $c_{ij}^{(0)}=0$ and $c_{ij}=c_{ij}^{(n)}$)
 - lacktriangle As stated, loop nest describes flat reduction tree with depth O(n)
 - lacktriangle Using associativity of addition can obtain DAGs with depth $O(\log(n))$
- Recursive formulation describes another algorithm/DAG

$$egin{bmatrix} egin{bmatrix} oldsymbol{C}_{11} & oldsymbol{C}_{12} \ oldsymbol{C}_{21} & oldsymbol{C}_{22} \end{bmatrix} = egin{bmatrix} oldsymbol{A}_{11} & oldsymbol{A}_{12} \ oldsymbol{A}_{21} & oldsymbol{A}_{22} \end{bmatrix} egin{bmatrix} oldsymbol{B}_{11} & oldsymbol{B}_{12} \ oldsymbol{B}_{21} & oldsymbol{B}_{22} \end{bmatrix}$$

Performing eight block products recursively yields cost

$$T(n) = 8T(n/2) + O(n^2) = O(n^3)$$

Recursive calls can be done in parallel and algorithm is cache-oblyious

Family of Classical Matrix Multiplication Algorithms

- The nested-loop and recursive formulations are two instances of a family of classical matrix multiplication algorithms
 - They yield different partial orders
 - **Both compute products** $a_{ik}b_{kj}$ and sum along k
 - Consequently, associativity of addition implies they are equivalent in exact arithmetic
- Can describe family of DAGs as a hypergraph
 - ▶ Define hyperedges $h_{ij}^{(C)} = (\{a_{ik}b_{kj}: k \in \{1,\dots,n\}\}, c_{ij})$ to denote reduction/sum
 - Could further abstract DAG edges $(a_{ik}, a_{ik}b_{kj})$ as 'broadcast' hyperedges $h_{ik}^{(A)} = (a_{ik}, \{a_{ik}b_{kj} : k \in \{1, \dots, n\}\})$ and $h_{kj}^{(B)}$ similarly
 - Expansion properties of this hypergraph imply expansion properties for DAGs arising from any summation order

Surface Area to Volume Ratio in Hypergraphs

- ▶ We can analyze the hypergraph to determine communication cost bounds
 - Would like to consider any partial order equivalent via associativity
 - For simplicity, often want to assume no intermediate values are recomputed
- ► The *Loomis-Whitney* is a *volumetric inequality* that provides a way to bound expansion
 - ightharpoonup Consider a set of products $S \subseteq \{a_{ik}b_{kj}: i,j,k \in \{1,\ldots,n\}\}$
 - Let $H_S = H_S^{(A)} \cup H_S^{(B)} \cup H_S^{(C)}$ be the set of hyperedges adjacent to S,

$$|S| \le \left(|H_S^{(A)}| \cdot |H_S^{(B)}| \cdot |H_S^{(C)}| \right)^{1/2}$$

Consequently, we can derive communication lower bounds by infering that e.g.,

$$|H_S| \ge (1/3)^{1/3} |S|^{2/3}$$

Compression and Recomputation

- Our previous discussion of communication assumed that each hypergraph edge requires communication of a matrix entry
 - Perhaps it is possible to communicate less information by transforming a set of entries, e.g. taking linear combinations there of (sending $a_{ij} + a_{i'j'}$ instead of both individually)?
 - Could lower bound information low and compression via linear combinations by considering rank
- ▶ A method that computes bilinear products $a_{ik}b_{kj}$ may take arbitrary linear combinations of entries of A, B, or partial sums for C
 - ▶ Given a vector of input linear combinations $s^{(A)}$ of entries of A, $s^{(B)}$ of entries of B, output some set of linear combinations $s^{(C)}$ of products $a_{ik}b_{kj}$, we have that for some $A^{(S)}$, $B^{(S)}$, $C^{(S)}$,

$$oldsymbol{s}^{(C)} = oldsymbol{C}^{(S)} igg[(oldsymbol{A}^{(S)T} oldsymbol{s}^{(A)}) \odot (oldsymbol{B}^{(S)T} oldsymbol{s}^{(B)}) igg]$$

▶ To lower bound the dimensions of $s^{(A)}$, $s^{(B)}$, and $s^{(C)}$, need to relate $A^{(S)}$, $B^{(S)}$, and $C^{(S)}$ to overall computation

Bilinear Algorithms

A bilinear algorithm (V. Pan, 1984) $\Lambda = ({m F}^{(A)}, {m F}^{(B)}, {m F}^{(C)})$ computes

$$c = F^{(C)}[(F^{(A)T}a) \odot (F^{(B)T}b)],$$

where a and b are inputs and \odot is the Hadamard (pointwise) product.

$$\begin{bmatrix}
\mathbf{c}
\end{bmatrix} = \begin{bmatrix}
\begin{bmatrix}
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times
\end{bmatrix}
\begin{bmatrix}
\begin{bmatrix}
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times
\end{bmatrix}
\begin{bmatrix}
\begin{bmatrix}
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times
\end{bmatrix}
\end{bmatrix}
\begin{bmatrix}
\begin{bmatrix}
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times
\end{bmatrix}
\end{bmatrix}
\begin{bmatrix}
\mathbf{d}
\end{bmatrix}$$

Bilinear Algorithms as Tensor Factorizations

▶ A bilinear algorithm corresponds to a CP tensor decomposition

$$egin{aligned} c_i &= \sum_{r=1}^R f_{ir}^{(C)} igg(\sum_j f_{jr}^{(A)} a_j igg) igg(\sum_k f_{kr}^{(B)} b_k igg) \ &= \sum_j \sum_k igg(\sum_{r=1}^R f_{ir}^{(C)} f_{jr}^{(A)} f_{kr}^{(B)} igg) a_j b_k \ &= \sum_j \sum_k t_{ijk} a_j b_k \quad ext{where} \quad t_{ijk} = \sum_{r=1}^R f_{ir}^{(C)} f_{jr}^{(A)} f_{kr}^{(B)} \end{aligned}$$

- For multiplication of $n \times n$ matrices, we can define a *matrix multiplication tensor* and consider algorithms with various bilinear rank
 - ightharpoonup T is $n^2 \times n^2 \times n^2$
 - ightharpoonup Classical algorithm has rank $R=n^3$
 - Strassen's algorithm has rank $R \approx n^{\log_2(7)}$

Strassen's Algorithm

$$\begin{aligned} \text{Strassen's algorithm} & \begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \cdot \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix} \\ & M_1 = (A_{11} + A_{22}) \cdot (B_{11} + B_{22}) & C_{11} = M_1 + M_4 - M_5 + M_7 \\ & M_2 = (A_{21} + A_{22}) \cdot B_{11} & C_{21} = M_2 + M_4 \\ & M_3 = A_{11} \cdot (B_{12} - B_{22}) & C_{12} = M_3 + M_5 \\ & M_4 = A_{22} \cdot (B_{21} - B_{11}) & C_{22} = M_1 - M_2 + M_3 + M_6 \\ & M_5 = (A_{11} + A_{12}) \cdot B_{22} \\ & M_6 = (A_{21} - A_{11}) \cdot (B_{11} + B_{12}) \\ & M_7 = (A_{12} - A_{22}) \cdot (B_{21} + B_{22}) \end{aligned}$$

By performing the nested calls recursively, Strassen's algorithm achieves cost,

$$T(n) = 7T(n/2) + O(n^2) = O(7^{\log_2 n}) = O(n^{\log_2 7})$$

Expansion in Bilinear Algorithms

- ► The communication cost of a bilinear algorithm depends on the amount of data needed to compute subsets of the bilinear products.
 - ▶ A schedule may involve computations of parts of the bilinear algorithm, of the form, $\Lambda = (\mathbf{F}^{(A)}, \mathbf{F}^{(B)}, \mathbf{F}^{(C)})$, $\Lambda_{\mathrm{sub}} \subseteq \Lambda$ if for some projection matrix \mathbf{P} ,

$$\Lambda_{\text{sub}} = (\boldsymbol{F}^{(A)}\boldsymbol{P}, \boldsymbol{F}^{(B)}\boldsymbol{P}, \boldsymbol{F}^{(C)}\boldsymbol{P}).$$

- ightharpoonup The projection matrix extracts #cols(P) columns of each matrix.
- lacktriangle A bilinear algorithm Λ can be associated expansion bound $\mathcal{E}_{\Lambda}:\mathbb{N}^3\to\mathbb{N}$
 - Expansion bounds holds if for all

$$\Lambda_{\mathrm{sub}} \coloneqq (\boldsymbol{F}_{\mathrm{sub}}^{(A)}, \boldsymbol{F}_{\mathrm{sub}}^{(B)}, \boldsymbol{F}_{\mathrm{sub}}^{(C)}) \subseteq \Lambda$$

$$\textit{we have} \; \mathrm{rank}(\Lambda_{\mathrm{sub}}) \leq \mathcal{E}_{\Lambda} \left(\mathrm{rank}(\textbf{\textit{F}}_{\mathbf{sub}}^{(\textbf{\textit{A}})}), \mathrm{rank}(\textbf{\textit{F}}_{\mathbf{sub}}^{(\textbf{\textit{B}})}), \mathrm{rank}(\textbf{\textit{F}}_{\mathbf{sub}}^{(\textbf{\textit{C}})}) \right)$$

lacktriangledown For matrix mult., Loomis-Whitney inequality $o \mathcal{E}_{ exttt{MM}}(x,y,z) = \sqrt{xyz}$