CS 598: Provably Efficient Algorithms for Numerical and
Combinatorial Problems
Part 2: Algorithm Representation

Edgar Solomonik

University of Illinois at Urbana-Champaign

Straight Line Programs

» Often, we want to quantify the efficiency of an algorithm that solves any
problem of size n in f(n) iterations, i.e., it is a straight line program

» Numerical algorithms often fit this form, including for matrix multiplication,
convolution, matrix factorizations, direct solvers, k-iterations of an sparse
iterative method

» Programs that have branches or conditional loop bounds may not be described
a straight line program

» The completed execution of a program for a particular problem may always
be described by a straight line program

» Ultimately a sequence of instructions are executed

» These instructions may be independent and so can be reordered, thus we have a
set of operations which need to be executed according to a partial order

Algorithms as Directed Acyclic Graphs

» A directed acyclic graph (DAG) describes a straight line program in terms of
elementwise operations (addition, multiplication, etc.)

» This DAG has a vertex for each scalar value input to or computed within the
program

» Computed values are vertices with in-degree one or two in the DAG

> Assuming an algorithm is a straight line program, we may ask questions
regarding parallelism and communication cost

» Depth of DAG gives lower bound on parallel execution time
» Expansion properties describe communication cost

Schedules of an Algorithm

» A schedule assigns the vertices of a straight-line program to instructional
units and maanages associated communication

» Schedule depends on architectural model
» Sequential with explicitly managed bounded fast memory (cache/register file),
schedule needs to provide reads/writes/discards
» Sequential with implicitly managed bounded fast memory (cache/register file) via a
given caching protocol

» Parallel shared memory with no fast memory (PRAM), variants regarding how to
handle concurrent reads/writes to same locations

» Distributed-memory parallel (BSP/a-[3), schedule may manage initial data layout,
communication and synchronization

Parameterization of Algorithms

» Oftentimes, we may want to paramterize the algorithm (and not just the
schedule) depending on the architecture

» For example, we may use a flat reduction tree on a single processor as opposed
to a binary reduction tree with many processors

» Reorganization of DAG may minimize expansion with respect to a parameter
controlling subset size (which may be correlated with fast memory size)

> An algorithm may also be designed to be oblivious to a parameter, i.e., to
minimize execution time for any choice of a particular parameter

» This notion is most important for fast memory (cache) size, with corresponding
algorithms refered to as cache-oblivious

» Other examples include network-oblivious algorithms

Matrix Multiplication as a DAG
Lets consider the matrix multiplication problem: compute C such that C = AB
with A, B, C € R™*"
> Loop-nest can be used to describe algorithm/DAG (for ¢, for 7, for k,
cg;) = cl(»;c_l) + aixbr; with cg)) =0and¢; = CE;-L))
> As stated, loop nest describes flat reduction tree with depth O(n)
» Using associativity of addition can obtain DAGs with depth O(log(n))

» Recursive formulation describes another algorithm/DAG

[Cn ClQ:| _ [An A12] [311 312}
Co Ca Az A |B21 Ba

» Performing eight block products recursively yields cost

T(n) = 8T (n/2) + O(n?) = O(n?)

» Recursive calls can be done in parallel and algorithm is cache-oblvious

Family of Classical Matrix Multiplication Algorithms

» The nested-loop and recursive formulations are two instances of a family of
classical matrix multiplication algorithms

» They yield different partial orders
» Both compute products a;ib,; and sum along k

» Conseuqently, associativity of addition implies they are equivalent in exact
arithmetic

» Can describe family of DAGs as a hypergraph

» Define hyperedges h§f> = ({airbr; : k € {1,...,n}}, c;;) to denote
reduction/sum

» Could further abstract DAG edges (ai, aixbr;) as ‘broadcast’ hyperedges
hg,f) = (@i, {awbr; 1 k€ {1,...,n}}) and h;f) similarly

» Expansion properties of this hypergraph imply expansion properties for DAGs
arising from any summation order

Surface Area to Volume Ratio in Hypergraphs
> We can analyze the hypergraph to determine communication cost bounds
» Would like to consider any partial order equivalent via associativity

» For simplicity, often want to assume no intermediate values are recomputed

» The Loomis-Whitney is a volumetric inequality that provides a way to bound
expansion

» Consider a set of products S C {aibi; : .7,k € {1,...,n}}
> letHg = HéA) U HéB) U Héc) be the set of hyperedges adjacent to S,

A B o\ /2
S| < (1§15 - 1HE))

» Consequently, we can derive communication lower bounds by infering that e.g.,

|Hs| > (1/3)"/°] 52/

Compression and Recomputation

» Our previous discussion of communication assumed that each hypergraph
edge requires communication of a matrix entry

» Perhaps it is possible to communicate less information by transforming a set of
entries, e.g. taking linear combinations there of (sending a,; + a, ;- instead of
both individually)?

» Could lower bound information low and compression via linear combinations by
considering rank
» A method that computes bilinear products a;;b,; may take arbitrary linear
combinations of entries of A, B, or partial sums for C

» Given a vector of input linear combinations s4) of entries of A, s(P) of entries
of B, output some set of linear combinations s(©) of products a;iby;, we have
that for some AS), B(S), C(9),

s =) |[(AOT) o (BET5(B))

» To lower bound the dimensions of s(4), s(B) and s(©), need to relate AS), B(),
and C'9) to overall computation

Bilinear Algorithms

A bilinear algorithm (V. Pan, 1984) A = (F(), F(B) F(©)) computes
c=FO(FYTa)o (FPTh),

where a and b are inputs and © is the Hadamard (pointwise) product.

T
x X x X XX x x X X X X X X X
X X X X X X X XX X X X X X X
X x X X x X xx XX X X
Cl=|x X X X X X x allo X X X
X X X X x x X X X
X X XX X X X X X X X X
X x X X X X X xx X XX X X XXX

Bilinear Algorithms as Tensor Factorizations
» A bilinear algorithm corresponds to a CP tensor decomposition

R
o= 1S) (S s
r=1 j k
R
=S X (AR Yast
i k r=1
R
- Z Ztijkajbk where t;j, = Z f}f’f}f‘)f,if’
j k r=1

» For multiplication of n x n matrices, we can define a matrix multiplication
tensor and consider algorithms with various bilinear rank
> Tisn? xn2xn?
» Classical algorithm has rank R = n?
» Strassen’s algorithm has rank R ~ n'°g2(7)

Strassen’s Algorithm

Strassen’s algorithm {Cm Con

My = (A11 + Azz) - (Bi11 + Bag)
M, = (A21 + Az) - Bix
M3 = Ay - (B2 — Bag)
M,y = Az - (B21 — B11)
Ms = (Ai1 + Ai12) - Bao
Mg = (A21 — A11) - (Bi1 + Bi2)
M7 = (A2 — Agz) - (B21 + Ba2)

By performing the nested calls recursively, Strassen’s algorithm achieves cost,

Cu CIQ] _ |:

B;; B
By1 Ba

C11 = My + My — M5 + M~
Co = M> + M,
Ci2 = M3 + M5
Ca = My — M> + M3 + Mg

T(n) = 7T(n/2) + O(n?) = O(7'°%2") = O(nl&27)

Expansion in Bilinear Algorithms

» The communication cost of a bilinear algorithm depends on the amount of
data needed to compute subsets of the bilinear products.
» A schedule may involve computations of parts of the bilinear algorithm, of the
form, A = (FY, F(B) F(©), Ay, C A if for some projection matrix P,
Agp = (FA P FE P FO P,
> The projection matrix extracts #cols(P) columns of each matrix.

» A bilinear algorithm A can be associated expansion bound £, : N> = N
» Expansion bounds holds if for all

Agupy == (F(A) B F(C)) CA

sub » *~ sub = sub

we have rank(Agup) < Ea (rank(F(A)

sub

), rank(F3)Y, rank(F(S)))

sub sub

» For matrix mult., Loomis-Whitney inequality — Eum(z,y, 2) = \/Tyz

	Algorithms, Programs, and Schedules
	Matrix Multiplication

