
CS 598: Provably E�cient Algorithms for Numerical and
Combinatorial Problems

Part 2: Algorithm Representation

Edgar Solomonik

University of Illinois at Urbana-Champaign

Straight Line Programs

I Often, we want to quantify the e�ciency of an algorithm that solves any
problem of size n in f(n) iterations, i.e., it is a straight line program
I Numerical algorithms often fit this form, including for matrix multiplication,

convolution, matrix factorizations, direct solvers, k-iterations of an sparse
iterative method

I Programs that have branches or conditional loop bounds may not be described
a straight line program

I The completed execution of a program for a particular problem may always
be described by a straight line program
I Ultimately a sequence of instructions are executed
I These instructions may be independent and so can be reordered, thus we have a

set of operations which need to be executed according to a partial order

Algorithms as Directed Acyclic Graphs

I A directed acyclic graph (DAG) describes a straight line program in terms of
elementwise operations (addition, multiplication, etc.)
I This DAG has a vertex for each scalar value input to or computed within the

program
I Computed values are vertices with in-degree one or two in the DAG

I Assuming an algorithm is a straight line program, we may ask questions
regarding parallelism and communication cost
I Depth of DAG gives lower bound on parallel execution time
I Expansion properties describe communication cost

Schedules of an Algorithm

I A schedule assigns the vertices of a straight-line program to instructional
units and maanages associated communication
I Schedule depends on architectural model

I Sequential with explicitly managed bounded fast memory (cache/register file),
schedule needs to provide reads/writes/discards

I Sequential with implicitly managed bounded fast memory (cache/register file) via a
given caching protocol

I Parallel shared memory with no fast memory (PRAM), variants regarding how to
handle concurrent reads/writes to same locations

I Distributed-memory parallel (BSP/α–β), schedule may manage initial data layout,
communication and synchronization

Parameterization of Algorithms

I Oftentimes, we may want to paramterize the algorithm (and not just the
schedule) depending on the architecture
I For example, we may use a flat reduction tree on a single processor as opposed

to a binary reduction tree with many processors
I Reorganization of DAG may minimize expansion with respect to a parameter

controlling subset size (which may be correlated with fast memory size)

I An algorithm may also be designed to be oblivious to a parameter, i.e., to
minimize execution time for any choice of a particular parameter
I This notion is most important for fast memory (cache) size, with corresponding

algorithms refered to as cache-oblivious
I Other examples include network-oblivious algorithms

Matrix Multiplication as a DAG
Lets consider the matrix multiplication problem: compute C such that C = AB
with A,B,C ∈ Rn×n

I Loop-nest can be used to describe algorithm/DAG (for i, for j, for k,
c

(k)
ij = c

(k−1)
ij + aikbkj with c

(0)
ij = 0 and cij = c

(n)
ij)

I As stated, loop nest describes flat reduction tree with depth O(n)

I Using associativity of addition can obtain DAGs with depth O(log(n))

I Recursive formulation describes another algorithm/DAG[
C11 C12

C21 C22

]
=

[
A11 A12

A21 A22

] [
B11 B12

B21 B22

]
I Performing eight block products recursively yields cost

T (n) = 8T (n/2) + O(n2) = O(n3)

I Recursive calls can be done in parallel and algorithm is cache-oblvious

Family of Classical Matrix Multiplication Algorithms
I The nested-loop and recursive formulations are two instances of a family of

classical matrix multiplication algorithms
I They yield di�erent partial orders
I Both compute products aikbkj and sum along k

I Conseuqently, associativity of addition implies they are equivalent in exact
arithmetic

I Can describe family of DAGs as a hypergraph

I Define hyperedges h
(C)
ij = ({aikbkj : k ∈ {1, . . . , n}}, cij) to denote

reduction/sum
I Could further abstract DAG edges (aik, aikbkj) as ‘broadcast’ hyperedges

h
(A)
ik = (aik, {aikbkj : k ∈ {1, . . . , n}}) and h

(B)
kj similarly

I Expansion properties of this hypergraph imply expansion properties for DAGs
arising from any summation order

Surface Area to Volume Ratio in Hypergraphs
I We can analyze the hypergraph to determine communication cost bounds

I Would like to consider any partial order equivalent via associativity
I For simplicity, often want to assume no intermediate values are recomputed

I The Loomis-Whitney is a volumetric inequality that provides a way to bound
expansion
I Consider a set of products S ⊆ {aikbkj : i, j, k ∈ {1, . . . , n}}
I Let HS = H

(A)
S ∪H

(B)
S ∪H

(C)
S be the set of hyperedges adjacent to S,

|S| ≤
(
|H(A)

S | · |H(B)
S | · |H(C)

S |
)1/2

I Consequently, we can derive communication lower bounds by infering that e.g.,

|HS | ≥ (1/3)1/3|S|2/3

Compression and Recomputation
I Our previous discussion of communication assumed that each hypergraph

edge requires communication of a matrix entry
I Perhaps it is possible to communicate less information by transforming a set of

entries, e.g. taking linear combinations there of (sending aij + ai′j′ instead of
both individually)?

I Could lower bound information low and compression via linear combinations by
considering rank

I A method that computes bilinear products aikbkj may take arbitrary linear
combinations of entries of A, B, or partial sums for C
I Given a vector of input linear combinations s(A) of entries of A, s(B) of entries

of B, output some set of linear combinations s(C) of products aikbkj , we have
that for some A(S), B(S), C(S),

s(C) = C(S)

[
(A(S)Ts(A))� (B(S)Ts(B))

]
I To lower bound the dimensions of s(A), s(B), and s(C), need to relate A(S), B(S),

and C(S) to overall computation

Bilinear Algorithms

A bilinear algorithm (V. Pan, 1984) Λ = (F (A),F (B),F (C)) computes

c = F (C)[(F (A)Ta)� (F (B)Tb)],

where a and b are inputs and � is the Hadamard (pointwise) product.

Bilinear Algorithms as Tensor Factorizations
I A bilinear algorithm corresponds to a CP tensor decomposition

ci =

R∑
r=1

f
(C)
ir

(∑
j

f
(A)
jr aj

)(∑
k

f
(B)
kr bk

)

=
∑
j

∑
k

(R∑
r=1

f
(C)
ir f

(A)
jr f

(B)
kr

)
ajbk

=
∑
j

∑
k

tijkajbk where tijk =

R∑
r=1

f
(C)
ir f

(A)
jr f

(B)
kr

I For multiplication of n× n matrices, we can define a matrix multiplication
tensor and consider algorithms with various bilinear rank
I T is n2 × n2 × n2

I Classical algorithm has rank R = n3

I Strassen’s algorithm has rank R ≈ nlog2(7)

Strassen’s Algorithm

Strassen’s algorithm
[
C11 C12

C21 C22

]
=

[
A11 A12

A21 A22

]
·
[
B11 B12

B21 B22

]
M1 = (A11 +A22) · (B11 +B22)

M2 = (A21 +A22) ·B11

M3 = A11 · (B12 −B22)

M4 = A22 · (B21 −B11)

M5 = (A11 +A12) ·B22

M6 = (A21 −A11) · (B11 +B12)

M7 = (A12 −A22) · (B21 +B22)

C11 = M1 +M4 −M5 +M7

C21 = M2 +M4

C12 = M3 +M5

C22 = M1 −M2 +M3 +M6

By performing the nested calls recursively, Strassen’s algorithm achieves cost,

T (n) = 7T (n/2) + O(n2) = O(7log2 n) = O(nlog2 7)

Expansion in Bilinear Algorithms
I The communication cost of a bilinear algorithm depends on the amount of

data needed to compute subsets of the bilinear products.
I A schedule may involve computations of parts of the bilinear algorithm, of the

form, Λ = (F (A),F (B),F (C)), Λsub ⊆ Λ if for some projection matrix P ,

Λsub = (F (A)P ,F (B)P ,F (C)P).

I The projection matrix extracts #cols(P) columns of each matrix.

I A bilinear algorithm Λ can be associated expansion bound EΛ : N3 → N
I Expansion bounds holds if for all

Λsub := (F
(A)
sub ,F

(B)
sub ,F

(C)
sub) ⊆ Λ

we have rank(Λsub) ≤ EΛ
(

rank(F
(A)
sub), rank(F

(B)
sub), rank(F

(C)
sub)

)
I For matrix mult., Loomis-Whitney inequality→ EMM(x, y, z) =

√
xyz

	Algorithms, Programs, and Schedules
	Matrix Multiplication

