CS 598: Provably Efficient Algorithms for Numerical and Combinatorial Problems

Part 3: Parallelism in Algorithms

Edgar Solomonik

University of Illinois at Urbana-Champaign

Circuits and PRAM

Circuits were the first parallel algorithms

► The *PRAM* model tries to stay consistent with this view

Inner Product in the PRAM Model

ightharpoonup Inner product with n processors

▶ Inner product with $n/\log_2(n)$ processors

Basic Linear Algebra Subroutines (BLAS) in the PRAM Model

Vector scaling (BLAS 1)

Matrix-vector multiplication and outer product (BLAS 2)

Work-Depth Model

► The work-depth (or work-time) model keeps track only of total work and algorithm depth/time

Its possible to schedule a work-optimal PRAM algorithm so that it uses an asymptotically optimal number of processors

Numerical Linear Algebra in PRAM

Standard algorithms for triangular solve and matrix factorizations have polynomial depth

Polylogarithmic depth algorithms exist for solving linear systems

Recursive Matrix Factorization Depth

lacktriangle Recursive Cholesky $oldsymbol{A} = oldsymbol{L} oldsymbol{L}^T$ has polynomial depth

lacktriangleright Recursive triangular inversion $S=L^{-1}$ has logarithmic depth

Sorting and Parallel Sorting

Parallel sorting within a single shared-memory

Most sorting algorithms can be classified as merge-based or distribution-based

Bitonic Sort

Bitonic Merge

Bitonic sequence as a circle

Matching opposite pairs in the circle

Swapping opposite pairs in the circle

Collecting the min/max into different subsequences

Any partition subdivides smaller/greater halves

Arranging the two halves into new circles

Swapping opposites again

Continuing with bitonic merge recursively

Bitonic merge

▶ A bitonic sequence is any cyclic shift of the sequence $\{i_0 \leq \cdots \leq i_k \geq \cdots i_{n-1}\}$

▶ There exists $l \le k$, such that the largest n/2 elements of (unshifted bitonic sequence) S are the subsequence $\{i_l, \ldots, i_{l+n/2-1}\}$

BFS with Sparse Linear Algebra

For undirect graph G=(V,E) Breadth First Search (BFS) takes as input a source vertex s and outputs an assignment of vertices to frontiers

lacktriangle With adjacency matrix $m{A}$ of G, can compute BFS via matrix-vector products

Sparse Linear Algebra in PRAM

ightharpoonup Sparse-matrix-vector product (SpMV) with m nonzeros (edges) in matrix

► Sparse-matrix-sparse-vector product (SpMSpV) with *k* nonzeros (frontier vertices) in vector

BFS on a PRAM

lackbox Each BFS iteration requires an SpMSpV with an output filter $m{f}^{(i+1)} = m{u}^{(i)} \odot (m{A}m{f}^{(i)})$

Different choices of BFS algorithm yield different work/depth

BFS on a PRAM

lackbox Each BFS iteration requires an SpMSpV with an output filter $m{f}^{(i+1)} = m{u}^{(i)} \odot (m{A}m{f}^{(i)})$

Different choices of BFS algorithm yield different work/depth

Connectivity in Graphs

 Connectivity seeks to label vertices with a unique label for each connected component

▶ Shiloach and Vishkin (1980) CRCW PRAM algorithm for connectivity

Shiloach-Vishkin Connectivity Algorithm

Let each node i store 'parent' p(i) and perform below steps until convergence

conditional star hooking

unconditional star hooking

Shortcutting (pointer chasing)

A graph with two connected components

First iteration

1. conditional star hooking

First iteration

2. unconditional star hooking

First iteration

3. shortcutting

Second iteration

1. conditional star hooking

Second iteration

2. unconditional star hooking

Analysis of parallel tree connectivity

Algorithm converges after $O(\log(n))$ iterations

▶ Sum of tree heights (starts at n) decreases by a factor of at least 3/2 every iteration

ightharpoonup Requires O(n+m) work per iteration

Shortest Paths

▶ Given a positive weight function $w: E \to \mathbb{R}^+$, compute shortest distances from a source vertex s to all other vertices

Bellman-Ford can be expressed as matix-vector products on the tropical (min-plus) semiring, using SpMV/SpMSpV

All-Pairs Shortest-Paths

▶ Given a positive weight function $w: E \to \mathbb{R}^+$, compute shortest distances matrix D containing minimum distances between all pairs of vertices

lacktriangle Floyd-Warshall algorithm computes achieves $O(n^3)$ work

Floyd Warshall Algorithm

▶ $D^{(i)}$ contains the distances of all shortest paths $S^{(i)}$ with at most i edges going through some subset of vertices $\{1, \ldots, i-1\}$

▶ A recursive alternative to Floyd-Warshall is given by Gauss-Jordan elimination (Kleene's APSP algorithm)

Parallel All-Pairs Shortest-Paths

▶ Path doubling can be used to obtain polylogarithmic depth

▶ Tiskin (2001) proposed an improvement to achieve $O(n^3)$ cost

Parallel (Approximate) Matrix Inversion

Gauss-Jordan can be used to invert matrix, recursive Cholesky is similar

Can theoretically invert with polylogarithmic depth via Newton's method