
CS 598: Provably E�cient Algorithms for Numerical and
Combinatorial Problems
Part 3: Parallelism in Algorithms

Edgar Solomonik

University of Illinois at Urbana-Champaign



Circuits and PRAM
I Circuits were the first parallel algorithms

I The PRAM model tries to stay consistent with this view



Inner Product in the PRAM Model
I Inner product with n processors

I Inner product with n/ log2(n) processors



Basic Linear Algebra Subroutines (BLAS) in the PRAM Model
I Vector scaling (BLAS 1)

I Matrix-vector multiplication and outer product (BLAS 2)



Work-Depth Model
I The work-depth (or work-time) model keeps track only of total work and

algorithm depth/time

I Its possible to schedule a work-optimal PRAM algorithm so that it uses an
asymptotically optimal number of processors



Numerical Linear Algebra in PRAM
I Standard algorithms for triangular solve and matrix factorizations have

polynomial depth

I Polylogarithmic depth algorithms exist for solving linear systems



Recursive Matrix Factorization Depth
I Recursive Cholesky A = LLT has polynomial depth

I Recursive triangular inversion S = L−1 has logarithmic depth



Sorting and Parallel Sorting
I Parallel sorting within a single shared-memory

I Most sorting algorithms can be classified as merge-based or
distribution-based



Bitonic Sort



Bitonic Merge



Bitonic sequence as a circle



Matching opposite pairs in the circle



Swapping opposite pairs in the circle



Collecting the min/max into di�erent subsequences



Any partition subdivides smaller/greater halves



Arranging the two halves into new circles



Swapping opposites again



Continuing with bitonic merge recursively



Bitonic merge
I A bitonic sequence is any cyclic shift of the sequence
{i0 ≤ · · · ≤ ik ≥ · · · in−1}

I There exists l ≤ k, such that the largest n/2 elements of (unshifted bitonic
sequence) S are the subsequence {il, . . . , il+n/2−1}



BFS with Sparse Linear Algebra
I For undirect graph G = (V,E) Breadth First Search (BFS) takes as input a

source vertex s and outputs an assignment of vertices to frontiers

I With adjacency matrix A of G, can compute BFS via matrix-vector products



Sparse Linear Algebra in PRAM
I Sparse-matrix-vector product (SpMV) with m nonzeros (edges) in matrix

I Sparse-matrix-sparse-vector product (SpMSpV) with k nonzeros (frontier
vertices) in vector



BFS on a PRAM
I Each BFS iteration requires an SpMSpV with an output filter

f (i+1) = u(i) � (Af (i))

I Di�erent choices of BFS algorithm yield di�erent work/depth



BFS on a PRAM
I Each BFS iteration requires an SpMSpV with an output filter

f (i+1) = u(i) � (Af (i))

I Di�erent choices of BFS algorithm yield di�erent work/depth



Connectivity in Graphs
I Connectivity seeks to label vertices with a unique label for each connected

component

I Shiloach and Vishkin (1980) CRCW PRAM algorithm for connectivity



Shiloach-Vishkin Connectivity Algorithm
Let each node i store ‘parent’ p(i) and perform below steps until convergence
I conditional star hooking

I unconditional star hooking

I Shortcutting (pointer chasing)



A graph with two connected components



First iteration



First iteration



First iteration



Second iteration



Second iteration



Analysis of parallel tree connectivity
Algorithm converges after O(log(n)) iterations
I Sum of tree heights (starts at n) decreases by a factor of at least 3/2 every

iteration

I Requires O(n+m) work per iteration



Shortest Paths
I Given a positive weight function w : E → R+, compute shortest distances

from a source vertex s to all other vertices

I Bellman-Ford can be expressed as matix-vector products on the tropical
(min–plus) semiring, using SpMV/SpMSpV



All-Pairs Shortest-Paths
I Given a positive weight function w : E → R+, compute shortest distances

matrix D containing minimum distances between all pairs of vertices

I Floyd-Warshall algorithm computes achieves O(n3) work



Floyd Warshall Algorithm
I D(i) contains the distances of all shortest paths S(i) with at most i edges

going through some subset of vertices {1, . . . , i− 1}

I A recursive alternative to Floyd-Warshall is given by Gauss-Jordan
elimination (Kleene’s APSP algorithm)



Parallel All-Pairs Shortest-Paths
I Path doubling can be used to obtain polylogarithmic depth

I Tiskin (2001) proposed an improvement to achieve O(n3) cost



Parallel (Approximate) Matrix Inversion
I Gauss-Jordan can be used to invert matrix, recursive Cholesky is similar

I Can theoretically invert with polylogarithmic depth via Newton’s method


	Parallel Random Access Machine (PRAM)
	Parallel Sorting on a PRAM
	Graph Algorithms on a PRAM
	Parallel Matrix Factorizations

