# CS 598: Provably Efficient Algorithms for Numerical and Combinatorial Problems

Part 4: Communication Cost in Algorithms

**Edgar Solomonik** 

University of Illinois at Urbana-Champaign

#### Algorithmic cache management

Consider a computer with unlimited memory and a cache of size H

we can design algorithms by manually managing cache transfers

generally, efficient algorithms in this model try to select blocks of computation that minimize the surface-to-volume ratio

#### Cache-efficient matrix multiplication

Consider multiplication of  $n \times n$  matrices  $C = A \cdot B$ 

```
For i \in [1, n/s], j \in [1, n/t], k \in [1, n/v], define blocks C[i, j], A[i, k], B[k, j] with
dimensions s \times t, s \times v, and v \times t, respectively
for (i = 1 \text{ to } n/s)
  for (i = 1 \text{ to } n/t)
     initialize C[i,j] = 0 in cache
     for (k = 1 \text{ to } n/v)
       load A[i,k] into cache
       load B[k,j] into cache
       C[i,j] = C[i,j] + A[i,k]*B[k,j]
     end
     write C[i,j] to memory
  end
end
```

# Memory-bandwidth analysis of matrix multiplication

Lets consider bandwidth and latency cost if each matrix multiplication has dimensions s,t,v

▶ Given the constraint,  $st + sv + vt \le H$ , we can derive the optimal block sizes

#### Ideal cache model

 $lackbox{ A more accurate model is to consider a cache line size $L$ in addition to the cache size $H$$ 

We can now consider different caching protocols

## Matrix transposition in the ideal cache model

 $\blacktriangleright$  Matrix multiplication bandwidth cost with a tall cache is not affected by L

 $\blacktriangleright \ n \times n \ \text{matrix transposition becomes non-trivial}$ 

#### Cache obliviousness

▶ Introduced by Frigo, Leiserson, Prokop, Ramachadran

cache oblivious algorithms are stated without explicit control of data movement

# Cache oblivious matrix transposition

Given  $m \times n$  matrix  $\boldsymbol{A}$ , compute  $\boldsymbol{B} = \boldsymbol{A}^T$ 

#### Cache oblivious matrix multiplication

Given  $m \times k$  matrix  $\boldsymbol{A}$  and  $k \times n$  matrix  $\boldsymbol{B}$ , compute  $m \times n$  matrix  $\boldsymbol{C} = \boldsymbol{A}\boldsymbol{B}$ 

#### Cache oblivious fast Fourier transform (FFT)

▶ The Fourier transform computes  $y = D^{(n)}x$ , where  $d_{ij}^{(n)} = \omega_n^{ij}$  and  $\omega_n$  is the nth complex root of identity

A cache-oblivious algorithm for the FFT can be derived by folding  ${\pmb y}$  and  ${\pmb x}$  into matrices  ${\pmb Y}$  and  ${\pmb X}$  of dimensions  $\sqrt{n} \times \sqrt{n}$ 

#### Cache oblivious fast Fourier transform (FFT)

Lets now analyze the cost of the cache oblivious algorithm based on

$$Y = (((\boldsymbol{D}^{(m)}\boldsymbol{X})\odot \boldsymbol{F})\boldsymbol{D}^{(m)})^T$$

### A simple model for point-to-point messages

The time to send or receive a message of s words is  $\alpha + s \cdot \beta$  . Consider the cost of

a broadcast of  $\boldsymbol{s}$  words

# Bulk Synchronous Parallel (BSP) Model

► Bulk Synchronous Parallel (BSP) model (Valiant 1990)

► The cost of a BSP algorithm is a sum over supersteps of the maximum costs incurred in that superstep

#### Collective communication in BSP

▶ When h=p, most collective communication routines involving s words of data per processor can be done with BSP cost  $O(\alpha + s \cdot \beta)$ 

## **Butterfly Broadcast**



#### Matrix-vector Product

Lets design a cache-efficient algorithm for a matrix-vector product

▶ Lets design a BSP algorithm for a matrix-vector product

### Sparse matrix-vector Product

▶ 1D distribution is effective for BSP algorithm for SpMV

# Massively Parallel Computing (MPC) Model

► Massively Parallel Computing (MPC) model

Aim to achieve  $O(\log N)$  or  $O(\log \log N)$  rounds with minimal memory per processor

#### **Graph Algorithms in MPC**

ightharpoonup Graph algorithms in the MPC model for graphs with n vertices

#### Communication lower bounds

Given an algorithm (e.g. radix-2 FFT, bitonic sort) or family of algorithms (e.g. radix-k FFT, comparison based sorting algorithms), how much communication is necessary?

 Communication lower bounds ascertain optimality of communication schedules

### Classical results in communication lower bounds

Floyd 1972: for large cache lines  $L = \Theta(H)$ 

► Hong and Kung 1981, pebbling lower bound

ightharpoonup Aggarwal and Vitter 1988, lower bounds with any L, H

# Lower bounds by partitioning memory operations

Pebbling bounds employ the following general argument

## Lower bounds by partitioning computation

We can also take the dual view

- $\blacktriangleright$  we are given an algorithm that must perform F operations
- $\blacktriangleright$  we need to prove that the given 3H inputs and outputs at most  $f_{\rm alg}(H)$  of the computation can be done

### Bounding work in matrix multiplication

Consider the  $F = n^3$  products computed in square matrix multiplication

# Cache complexity lower bound for MM

Given  $f_{MM}(H) = H^{3/2}$ , we are essentially done

#### Interprocessor communication lower bound for MM

We can also use  $f_{\rm MM}$  to get lower bounds on interprocessor communication

#### Latency/synchronization lower bounds

From  $f_{\rm MM}$  to get lower bounds on the number of messages

# Radix-2 FFT dependency graph



## Paths in Radix-2 FFT dependency graph

Any two edge-disjoint paths in the FFT DAG intersect at no more than one vertex



in other words, the FFT DAG has no cycles

#### Work bound for FFT

We prove that the work bound for the radix-2 FFT is  $f_{\text{FFT}}(s) = s \log_2 s$ 

## Work bound for FFT, contd



#### Communication lower bound for the FFT

By induction the expression  $f_{\rm FFT}(s) = \max_t (f_{\rm FFT}(s-t) + f_{\rm FFT}(t) + 2\min(s-t,t))$  implies

$$f_{\mathsf{FFT}}(s) = \max_t ((s-t)\log_2(s-t) + t\log(t) + 2\min(s-t,t))$$

### Lower bounds via graph partitioning

Given a DAG representation of an algorithm, graph partitioning properties can provide communication lower bounds

Consideration of expansion of subgraphs can yield better bounds

#### Dependency interval expansion

Consider an algorithm that computes a set of operations V with a partial ordering, we denote a dependency interval between  $a,b\in V$  as

$$[a, b] = \{a, b\} \cup \{c : a < c < b, c \in V\}$$

#### Dependency interval expansion

Consider an algorithm that computes a set of operations V with a partial ordering, we denote a dependency interval between  $a,b\in V$  as

$$[a, b] = \{a, b\} \cup \{c : a < c < b, c \in V\}$$

#### Dependency interval expansion

Consider an algorithm that computes a set of operations V with a partial ordering, we denote a dependency interval between  $a,b\in V$  as

$$[a, b] = \{a, b\} \cup \{c : a < c < b, c \in V\}$$

Further, if the algorithm has a work bound  $f(H) = \Omega(H^{\frac{d}{d-1}})$ , then

$$W \cdot S^{d-2} = \Omega(n^{d-1})$$

### Example: diamond DAG



For the  $n \times n$  diamond DAG (d = 2),

$$F \cdot S^{d-1} = F \cdot S = \Omega((n/b)b^2) \cdot \Omega(n/b) = \Omega(n^2)$$
  
$$W \cdot S^{d-2} = W = \Omega((n/b)b) = \Omega(n)$$

idea of  $F \cdot S$  tradeoff goes back to Papadimitriou and Ullman, 1987

## Tradeoffs involving synchronization

For triangular solve with an  $n \times n$  matrix For Cholesky of an  $n \times n$  matrix For

computing s applications of a  $(2m+1)^d$ -point stencil