CS 598: Provably Efficient Algorithms for Numerical and
Combinatorial Problems
Part 4: Communication Cost in Algorithms

Edgar Solomonik

University of Illinois at Urbana-Champaign



Algorithmic cache management
Consider a computer with unlimited memory and a cache of size H
» we can design algorithms by manually managing cache transfers

» generally, efficient algorithms in this model try to select blocks of
computation that minimize the surface-to-volume ratio



Cache-efficient matrix multiplication

Consider multiplication of n x n matricesC = A- B

Fori e [1,n/s],j € [1,n/t], k € [1,n/v], define blocks Ci, j], Ali, k], Blk, j] with
dimensions s x ¢, s x v, and v x t, respectively

for (i = 1 to n/s)
for (j =1 to n/t)
initialize C[i,j] = @ in cache
for (k = 1 to n/v)
load A[i,k] into cache
load B[k,j] into cache
C[i,j] = C[i,j]l + A[i,kI*B[k,j]
end
write C[i,j] to memory
end
end



Memory-bandwidth analysis of matrix multiplication

> Lets consider bandwidth and latency cost if each matrix multiplication has
dimensions s, t, v

» Given the constraint, st + sv + vt < H, we can derive the optimal block sizes



Ideal cache model

» A more accurate model is to consider a cache line size L in addition to the
cache size H

» We can now consider different caching protocols



Matrix transposition in the ideal cache model

» Matrix multiplication bandwidth cost with a tall cache is not affected by L

> n x n matrix transposition becomes non-trivial



Cache obliviousness

» Introduced by Frigo, Leiserson, Prokop, Ramachadran

» cache oblivious algorithms are stated without explicit control of data
movement



Cache oblivious matrix transposition

Given m x n matrix A, compute B = A"



Cache oblivious matrix multiplication

Given m x k matrix A and k& x n matrix B, compute m x n matrix C = AB



Cache oblivious fast Fourier transform (FFT)

» The Fourier transform computes y = D™z, where d
nth complex root of identity

(n)

= wy! and w,, is the

> A cache-oblivious algorithm for the FFT can be derived by folding y and x
into matrices Y and X of dimensions /n x \/n



Cache oblivious fast Fourier transform (FFT)

> Lets now analyze the cost of the cache oblivious algorithm based on

Y = (D™ X) © F)D™)T



A simple model for point-to-point messages

The time to send or receive a message of s words is o + s - 3 Consider the cost of

a broadcast of s words



Bulk Synchronous Parallel (BSP) Model
» Bulk Synchronous Parallel (BSP) model (Valiant 1990)

» The cost of a BSP algorithm is a sum over supersteps of the maximum costs
incurred in that superstep



Collective communication in BSP

» When h = p, most collective communication routines involving s words of
data per processor can be done with BSP cost O(a + s - f3)



Butterfly Broadcast

+ O 3 EST8I 7
4 [0 3 3 5161 7
) 7
::;!;l:',.‘ ] By
A o
Y\ s s
[0 3 J 5161 7
[0 3 E 5161 7




Matrix-vector Product

» Lets design a cache-efficient algorithm for a matrix-vector product

> Lets design a BSP algorithm for a matrix-vector product



Sparse matrix-vector Product

» 1D distribution is effective for BSP algorithm for SpMV



Massively Parallel Computing (MPC) Model
> Massively Parallel Computing (MPC) model

» Aim to achieve O(log N) or O(loglog N) rounds with minimal memory per
processor



Graph Algorithms in MPC

» Graph algorithms in the MPC model for graphs with n vertices



Communication lower bounds

» Given an algorithm (e.g. radix-2 FFT, bitonic sort) or family of algorithms
(e.g. radix-k FFT, comparison based sorting algorithms), how much
communication is necessary?

» Communication lower bounds ascertain optimality of communication
schedules



Classical results in communication lower bounds
» Floyd 1972: for large cache lines L = ©(H)

» Hong and Kung 1981, pebbling lower bound

» Aggarwal and Vitter 1988, lower bounds with any L, H



Lower bounds by partitioning memory operations

Pebbling bounds employ the following general argument



Lower bounds by partitioning computation
We can also take the dual view
> we are given an algorithm that must perform F' operations

> we need to prove that the given 3H inputs and outputs at most f;4(H) of the
computation can be done



Bounding work in matrix multiplication

Consider the F' = n3 products computed in square matrix multiplication



Cache complexity lower bound for MM

Given fum(H) = H?/2?, we are essentially done



Interprocessor communication lower bound for MM

We can also use fum to get lower bounds on interprocessor communication



Latency/synchronization lower bounds

From fum to get lower bounds on the number of messages



Radix-2 FFT dependency graph




Paths in Radix-2 FFT dependency graph

Any two edge-disjoint paths in the FFT DAG intersect at no more than one vertex

in other words, the FFT DAG has no cycles



Work bound for FFT

We prove that the work bound for the radix-2 FFT is frrr(s) = slogy s



Work bound for FFT, contd




Communication lower bound for the FFT
By induction the expression frrr(s) = maxy(frrr(s — t) + frer(t) + 2 min(s — ¢, t))
implies
frer(s) = mtax((s —t)logy(s — t) + tlog(t) + 2 min(s — ¢, t))



Lower bounds via graph partitioning

> Given a DAG representation of an algorithm, graph partitioning properties
can provide communication lower bounds

» Consideration of expansion of subgraphs can yield better bounds



Dependency interval expansion
Consider an algorithm that computes a set of operations V' with a partial

ordering, we denote a dependency interval between a,b € V as

[a,b] ={a,b}U{c:a<c<bceV}



Dependency interval expansion
Consider an algorithm that computes a set of operations V' with a partial

ordering, we denote a dependency interval between a,b € V as

[a,b] ={a,b}U{c:a<c<bceV}



Dependency interval expansion
Consider an algorithm that computes a set of operations V' with a partial
ordering, we denote a dependency interval between a,b € V as

[a,b] ={a,b}U{c:a<c<bceV}

Further, if the algorithm has a work bound f(H) = Q(Hd%l), then

W 8972 = Qn)



Example: diamond DAG

Multicolored dependency intervals

Monochrome dependency intervals

Dependency chain P

For the n x n diamond DAG (d = 2)

%)

v?) - Q(n/b) = Q(n

= Q((n/b)b)

idea of F'- S tradeoff goes back to Papadimitriou and Ullman, 1987

= Q((n/b)

=F-S

F. Sd—l
W - Sd*?

= Q(n)

w



Tradeoffs involving synchronization

For triangular solve with an n x n matrix For Cholesky of an n x n matrix For

computing s applications of a (2m + 1)?-point stencil



	Ideal Cache Model
	Cache-oblivious algorithms
	Interprocessor Communication
	Massively Parallel Computing Model
	Communication Lower Bounds
	FFT communication lower bound
	Bandwidth and Latency Lower Bounds by Graph Partitioning


