Tridiagonal Matrix Full Solve Times

Factor Time (seconds)

System Size: n
A Computational Mechanics Example: Spring-Mass Equilibria and Time Scales

Relevant forces:

- Gravity:
 \[f_{g,i} = g m_i \]

- Spring forces:
 \[
 \begin{align*}
 f_{s,1} &= -k_1 d_1 + k_2 (d_2 - d_1) \\
 f_{s,2} &= -k_2 (d_2 - d_1) + k_3 (d_3 - d_2) \\
 f_{s,3} &= -k_3 (d_3 - d_2) + k_4 d_3
 \end{align*}
 \]
Fixed-End Case

Equilibrium: Net force = 0.

\[f_{g,i} + f_{s,i} = 0 \iff -f_{s,i} = f_{g,i}, \quad i = 1, \ldots, 3. \]

\[
\begin{bmatrix}
(k_1 + k_2) & -k_2 \\
-k_2 & (k_2 + k_3) & -k_3 \\
-k_3 & (k_3 + k_4)
\end{bmatrix}
\begin{bmatrix}
d_1 \\
d_2 \\
d_3
\end{bmatrix}
=
\begin{bmatrix}
m_{1g} \\
m_{2g} \\
m_{3g}
\end{bmatrix}
\]
Free-End Case

• Equivalent to fixed-end case with $k_4 = 0$:

\[
\begin{bmatrix}
(k_1 + k_2) & -k_2 \\
-k_2 & (k_2 + k_3) & -k_3 \\
-k_3 & k_3 \\
\end{bmatrix}
\begin{pmatrix}
d_1 \\
d_2 \\
d_3 \\
\end{pmatrix}
=
\begin{pmatrix}
m_1 g \\
m_2 g \\
m_3 g \\
\end{pmatrix}.
\]

• If $k_i = k$ and $m_i = m$, we have

\[
\begin{bmatrix}
2 & -1 \\
-1 & 2 & -1 \\
-1 & 1 \\
\end{bmatrix}
\begin{pmatrix}
d_1 \\
d_2 \\
d_3 \\
\end{pmatrix}
= \frac{mg}{k}
\begin{pmatrix}
1 \\
1 \\
1 \\
\end{pmatrix}.
\]
Some Comments on Solving the Equilibrium Problem

- Last time, we argued in favor of using `sparse(A)` in matlab for our tridiagonal matrix A.

- We also need to emphasize the importance of

 \[d = A\backslash f \]

 instead of

 \[d = \text{inv}(A) \times f \]

- The reason is that A^{-1} is full, with n^2 nonzeros.

- To see this, we’re going to revisit matrix-vector products of the form $\underline{w} = A\underline{u}$, and some physics.

- The two combined will shed light on why `inv(A)` is a very bad idea in our context.
A Computational Mechanics Example: Spring-Mass Motion

- Newton’s 2nd Law: \(ma = F_{\text{net}}. \)
 - Acceleration: \(a_i = \ddot{d}_i. \)
 - Net force: \(f_i = f_{s,i} + f_{g,i} \)

- Linear System.

For \(k=\text{constant}, \) fixed-end case:

\[
\begin{bmatrix}
m_1 \\
m_2 \\
\vdots \\
m_n
\end{bmatrix}
\begin{bmatrix}
\ddot{d}_1 \\
\ddot{d}_2 \\
\ddots \\
\ddot{d}_n
\end{bmatrix} = -k
\begin{bmatrix}
2 & -1 & & \\
-1 & 2 & -1 & \\
& & \ddots & \\
& & & -1 & 2
\end{bmatrix}
\begin{bmatrix}
d_1 \\
d_2 \\
\vdots \\
d_n
\end{bmatrix} + g
\begin{bmatrix}
m_1 \\
m_2 \\
\vdots \\
m_n
\end{bmatrix}
\]
Here, $\underline{d}(t)$ is the vector of unknown displacements,

$$
\underline{d}(t) := \begin{pmatrix}
 d_1(t) \\
 d_2(t) \\
 \vdots \\
 d_n(t)
\end{pmatrix}.
$$

• For general k:

$$
M\ddot{\underline{d}} = -A\underline{d}(t) + \underline{f}.
$$

• Initial Conditions.

Displacement: $\underline{d}(t = 0) = \underline{d}^0$

Velocity: $\dot{\underline{d}}(t = 0) = \dot{\underline{d}}^0$.
Conversion to a Homogeneous System

• Starting with

\[M \ddot{d} = -Ad(t) + f. \]

• Suppose \(d^\infty \) satisfies the (steady-state) equilibrium condition,

\[Ad^\infty = f. \]

• Let \(\delta := d - d^\infty \) be the departure from this equilibrium condition.
• Then

\[\dot{\delta} = \dot{d} \]

\[\ddot{\delta} = \ddot{d} \]

and

\[M\ddot{\delta} = M\ddot{d} = -A (\delta + d^\infty) + f. \]

\[= -A\delta. \]

• Initial conditions are:

\[\delta(0) = d^0 - d^\infty \]

\[\dot{\delta}(0) = \dot{d}^0. \]
• We now have a homogeneous initial-value problem (IVP):

$$M\ddot{\delta} = -A\delta + \text{I.C.s.}$$

• It is second-order in time.

• To solve this problem numerically, we rewrite it as a first-order system.

• Let

$$v := \ddot{\delta}$$

$$q := \begin{pmatrix} \delta \\ v \end{pmatrix}$$

$$\dot{q} = \begin{pmatrix} \dot{\delta} \\ \dot{v} \end{pmatrix} = \begin{pmatrix} \ddot{\delta} \\ \ddot{\delta} \end{pmatrix}.$$
• With these variables, we rewrite our 2nd-order ODE as a first-order system as follows.

\[
\begin{bmatrix}
 I & M \\
 0 & A
\end{bmatrix}
\begin{bmatrix}
 \dot{\delta} \\
 \dot{v}
\end{bmatrix}
=
\begin{bmatrix}
 0 & I \\
 -A & 0
\end{bmatrix}
\begin{bmatrix}
 \delta \\
 v
\end{bmatrix}.
\]

• In terms of \(q(t)\), we have,

\[
\dot{q} = \begin{bmatrix}
 I \\
 M^{-1}
\end{bmatrix}
\begin{bmatrix}
 0 & I \\
 -A & 0
\end{bmatrix}
q
\]

\[
= \begin{bmatrix}
 0 & I \\
 -M^{-1}A & 0
\end{bmatrix}
q
\]

\[
= Lq
\]

\[
dq/dt = Lq + \text{I.C.s.}
\]
• Simplest timestepper – \textit{Euler forward} (EF).
 (NB: EF is actually a very poor choice for this problem.
 It comes with no endorsement.
 It is, however, easy to understand.)

• Using Taylor series, we replace the time derivative by a finite difference,

\[
\left. \frac{dq}{dt} \right|_{t_{m-1}} = \frac{q^m - q^{m-1}}{\Delta t} + O(\Delta t) = Lq^{m-1}.
\]

• Rearranging to solve for the unknown q^m at time t^m,

\[
q^m = q^{m-1} + \Delta t Lq^{m-1} + O(\Delta t^2).
\]
• For reasons we’ll see later in the course, the unknown $O(\Delta t^2)$ residual is called the local truncation error (LTE).

• It is typically one order higher than the global truncation error (GTE), which for Euler forward is $O(\Delta t)$.

• The GTE is the error you observe in your final result, after integrating out to fixed time $t = T$. (Here, T is presumably prescribed by the user or problem definition.)

• To obtain Euler forward, we drop the $O(\Delta t^2)$ residual to yield

$$q^m = q^{m-1} + \Delta t L q^{m-1}.$$

This is our timestepping algorithm.

• When coupled with the initial condition q^0, EF provides a simple way (perhaps the simplest?) to advance from time level t^{m-1} to t^m.

(Note: If Δt is constant, then $t^m = m\Delta t$. We will generally assume Δt=constant, unless otherwise stated.)
How to choose Δt?

Possible strategies / considerations:

- Trial and error. (Why not?)
- A bit of analysis.

 1. How large is T?
 2. How does accuracy (at time T) depend on Δt?
 3. Does Δt impact the stability of the algorithm?
To address these questions, let’s start with a single mass, free-end.

\[m\ddot{d} = -kd, \quad d(0) = 1, \quad \dot{d}(0) = 0, \quad \text{(say).} \]

- Mechanical insight: the spring oscillates.

- Mathematics (ODE): consider a solution of the form \(d(t) = ae^{st} \).

\[
\begin{align*}
\dot{d} &= ase^{st} = asd \\
\ddot{d} &= as^2e^{st} = as^2d = -\frac{k}{m}d.
\end{align*}
\]

- Thus,

\[s = \pm \sqrt{-\frac{k}{m}} = \pm i\sqrt{\frac{k}{m}} = \pm i\omega. \]

where \(i := \sqrt{-1} \) and \(\omega := \sqrt{k/m} \).
• Since our equation is linear (in d) and we have two roots, s_1 and s_2 (our equation is second order), we can use superposition to add these two fundamental solutions,

$$d = a_1 e^{s_1 t} + a_2 e^{s_2 t}$$

$$= a_1 e^{i\omega t} + a_2 e^{-i\omega t}.$$

• At $t = 0$ we have:

$$d = a_1 + a_2 = 1$$

$$\dot{d} = i\omega a_1 - i\omega a_2 = 0,$$

from which we deduce $a_1 = a_2 = \frac{1}{2}$.

• Thus, the solution satisfying the differential equation and its initial condition is

$$d = \frac{1}{2} (e^{i\omega t} + e^{-i\omega t})$$

$$= \cos \omega t = \cos \frac{2\pi t}{\tau}.$$
Here, we have introduced the period,

\[\tau := \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{m}{k}}, \]

which is the most important time scale (aside, perhaps, from \(T \)).

Typically, we need \(\frac{\Delta t}{\tau} \ll 1 \) for accurate \textit{numerical integration} (timestepping), say, at least

\[\frac{\Delta t}{\tau} \approx \frac{1}{20}, \]

but the actual value depends on the choice of timestepper and the desired accuracy at the final time \(T \).
• What happens if there is more than one frequency?

• Possible options:
 – Choose $\Delta t < \tau_{\text{min}}$.

 – Use an implicit method that is stable for $\Delta t > \tau_{\text{min}}$, where τ_{min} is the smallest period that is relevant to your problem.

 – Use a model that eliminates the fast timescales (i.e., corresponding to $\tau < \tau_{\text{min}}$).

• Let’s look at some examples of timestepping options and slightly more complex systems.
• First, a quick summary:

 – We identified a relevant solution to the problem and the corresponding physical timescale, \(\tau \).

 – Our numerical solution has to be able to accurately represent (even just in a visual sense) this solution, which means \(\Delta t < \tau \).

 – In the case of multiple timescales, we typically are interested in some of them, say the ones having \(\tau > \tau_{\text{min}} \), where \(\tau_{\text{min}} \) is a value chosen by the engineer.
Relationship of Δt to EF Scheme.

- Recall, our EF scheme is applied to the 1st-order equation,

 \[
 \frac{dq}{dt} = Lq = \begin{bmatrix} 0 & 1 \\ -k/m & 0 \end{bmatrix} \begin{pmatrix} d \\ v \end{pmatrix}, \quad \begin{cases} d^0 = 1 \\ v^0 = 0 \end{cases}
 \]

- **Q:** How does ω relate to this system?

- **A:** Eigenvalues of L.

- Assume L has a complete set of (possibly complex) eigenvectors $z_k, k = 1, \ldots, n_L =: n$ s.t.

 \[
 Lz_k = \lambda_k z_k
 \]

 \[
 q = \sum_{k=1}^{n} \hat{q}_k z_k = \sum_{k=1}^{n} z_k \hat{q}_k = Z\hat{q}
 \]

 \[
 \hat{q} = Z^{-1} q.
 \]
• Everything is linear (in q) so we can rewrite our IVP in terms of \hat{q}:

$$\frac{d}{dt}q = \frac{d}{dt} \sum_{k=1}^{n} z_k \hat{q}_k$$

$$= \sum_{k=1}^{n} z_k \frac{d \hat{q}_k}{dt} = Z \frac{d \hat{q}}{dt}.$$

$$L_q = L \left(\sum_{k=1}^{n} z_k \hat{q}_k \right)$$

$$= \sum_{k=1}^{n} L z_k \hat{q}_k$$

$$= \sum_{k=1}^{n} \lambda_k z_k \hat{q}_k = \begin{bmatrix} \lambda_1 & & & \lambda_1 \\ & \bar{\Lambda} & & \\ & & \ddots & \\ & & & \lambda_n \end{bmatrix} \hat{q}$$
• Inserting these expansions into the IVP we have,

\[Z \frac{d \hat{q}}{dt} = Z \Lambda \hat{q} + \text{I.C.} \]

\[\frac{d \hat{q}}{dt} = \Lambda \hat{q} \]

• Because \(\Lambda \) is diagonal, this system decouples into \(n \) separate equations,

\[\frac{d \hat{q}_k}{dt} = \lambda_a \hat{q}_k, \quad k = 1, \ldots, n \]

\[\hat{q}^0 = Z^{-1} q^0 \]

Solution: \(\hat{q}_k = \hat{q}_k^0 e^{\lambda_k t} \).
For our system, with \(a = -k/m \), we have
\[
L = \begin{bmatrix}
0 & 1 \\
-\frac{k}{m} & 0
\end{bmatrix}.
\]

The eigenvalues satisfy
\[
\lambda : \quad L\ddot{z} = \lambda \ddot{z}
\]
\[
(L - I\lambda)\ddot{z} = 0
\]
\[
|L - I\lambda| = 0 \quad \text{(determinant)}.
\]

(Or \([V, D] = \text{eig}(\text{full}(L))\) in matlab. :)

\[
\begin{vmatrix}
-\lambda & 1 \\
a & -\lambda
\end{vmatrix} = \lambda^2 - a
\]

\[
\lambda = \pm \sqrt{a} = \pm \sqrt{-k/m} = \pm i\sqrt{k/m} = \pm i\omega.
\]

So we see that our 1st-order system give the same temporal response as our 2nd-order IVP, as should be expected.

In general, it’s often simpler to look at the eigenvalues of the first-order system, which is what we will primarily do later in the course.
Two timesteppers: Euler Forward and Euler Backward.

- Evaluate at given time point:
 \[
 \text{EF (explicit)} \quad \left. \frac{d\delta}{dt} \right|_{t^{n-1}} = L\delta^{n-1}
 \]

 \[
 \text{EB (implicit)} \quad \left. \frac{d\delta}{dt} \right|_{t^n} = L\delta^n
 \]

- First-order approximation to derivative:
 \[
 \text{EF:} \quad \left. \frac{d\delta}{dt} \right|_{t^{n-1}} = \frac{\delta^n - \delta^{n-1}}{\Delta t} + O(\Delta t)
 \]

 \[
 \text{EB:} \quad \left. \frac{d\delta}{dt} \right|_{t^n} = \frac{\delta^n - \delta^{n-1}}{\Delta t} + O(\Delta t)
 \]
• Update steps:

\[\delta^n = \delta^{n-1} + \Delta t L \delta^{n-1} = (I + \Delta t L) \delta^{n-1} \]

\[\text{EB: } \delta^n = \delta^{n-1} + \Delta t L \delta^n \]

\[(I - \Delta t L) \delta^n = \delta^{n-1} \]

\[\delta^n = (I - \Delta t L)^{-1} \delta^{n-1}. \]

• Euler backward (a.k.a. *implicit Euler*) requires solving the linear system \((I - \Delta t L)\) at every timestep.

• It is not more accurate than EF.

• It is, however, more *stable*.
• Consider scalar case, $L = \lambda$:

EF: $\delta^n = (1 + \Delta t \lambda) \delta^{n-1} \approx e^{\lambda \Delta t} \delta^{n-1}$

EB: $\delta^n = \frac{1}{(1 + \Delta t \lambda)} \delta^{n-1} \approx e^{\lambda \Delta t} \delta^{n-1}$.

• What happens for large $|\lambda \Delta t|$ in these cases?

• Let’s look at some examples.