Administrivia
Homework #10 is due Tuesday, Dec. 20.
Homework #11 is due Weds, Jan. 4.
Midterm #2 is Monday, Dec. 19 from 7–10 p.m.
Warmup Quiz
import numpy as np
tmax = 10.0
dt = 0.01
nt = int(tmax/dt) + 1
x = np.zeros((nt,))
for i in range(0,dt):
 vx = x[i-1] / np.sin(i)
 x[i+1] = x[i] + vx * dt

Which uncaught error will halt this code?

A ZeroDivisionError
B TypeError
C SyntaxError
D IndexError
import numpy as np
tmax = 10.0
dt = 0.01
nt = int(tmax/dt) + 1
x = np.zeros((nt,))
for i in range(0,dt):
 vx = x[i-1] / np.sin(i)
 x[i+1] = x[i] + vx * dt

Which uncaught error will halt this code?

A ZeroDivisionError
B TypeError *(range error)*
C SyntaxError
D IndexError
Question #2

x = np.ones(10)
for i in range(10):
 try:
 ???
 except:
 print('Error on step %d.'%err)
 continue

Which of the following candidates for ??? would not produce an error message?

A x += x[i+1]
B x[i] /= 0
C x[-i-1] = sum(x[:i])
D x[10-i] = sum(x[:i])
```python
x = np.ones(10)
for i in range(10):
    try:
        ???
    except:
        print('Error on step %d.' % err)
        continue
```

Which of the following candidates for `???` would not produce any error message?

A. `x += x[i+1]` index error
B. `x[i] /= 0` *(surprise!)*
C. `x[-i-1] = sum(x[:i])` *(surprise!)*
D. `x[10-i] = sum(x[:i])` index error
Common exceptions

- SyntaxError
- NameError
- TypeError
- ValueError
- IOError
- IndexError
- KeyError
- ZeroDivisionError
- IndentationError
- Exception
Why MATLAB?

- Designed for engineering.
- Excellent documentation: MATLAB Central.
- Ideal applications:
 - Linear algebra
 - Control dynamics
 - Numerical analysis
 - Image processing
- Many toolboxes available.
What is MATLAB?

- Programming language + environment.
- Proprietary, owned and maintained by MathWorks.
- Dates from late 1970s, under active development.
- Was an influence on NumPy/MPL, so will be familiar.
Basics

- Literals, variables, operators

4 ^ 3

- Expressions

a = 3 * 2
b = 1 + a

- Semicolon suppresses output (mutes): ;
b = b + 2;

- ans is default result.
a / 4
disp displays the value only.
disp(ans);
MATLAB implements:
- integers
- floating-point numbers
- complex numbers

in 8-, 16-, 32-, and 64-bit versions.

`whos` shows type, value of all variables in workspace.
Arrays are the fundamental type in MATLAB:

```matlab
a = [ 1 2 3 ];
```

Arrays are indexed using parentheses:

```matlab
b = a( 1 );
```

MATLAB counts from one, not zero!
More dimensional arrays use semicolons to separate rows:

\[A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}; \]

Arrays are indexed using parentheses and commas:

\[a = A(1,2); \]

Helper functions are available:

\[B = \text{ones}(3,3) + \text{eye}(3,3) + \text{zeros}(3,3); \]
Which of the following will produce this array?

A \[[1 \ 1 \ 1] \ ; \ [2 \ 2 \ 2] \]
B \[[1 \ 1 \ 1 \ ; \ 2 \ 2 \ 2] \]
C \[[1 \ 2 \] \ ; \ [1 \ 2 \] \ ; \ [1 \ 2 \] \]
D \[[1 \ 2 \ ; \ 1 \ 2 \ ; \ 1 \ 2 \] \]
E \[[[1 \ 1 \ 1] \ , \ [2 \ 2 \ 2] \] \]
Which of the following will produce this array?

A \[
\begin{bmatrix}
1 & 1 & 1 \\
2 & 2 & 2
\end{bmatrix}
\]
B \[
\begin{bmatrix}
1 & 1 & 1 \\
2 & 2 & 2
\end{bmatrix}
\]
C \[
\begin{bmatrix}
1 & 2 \\
1 & 2 \\
1 & 2
\end{bmatrix}
\]
D \[
\begin{bmatrix}
1 & 2 \\
1 & 2 \\
1 & 2
\end{bmatrix}
\]
E \[
\begin{bmatrix}
\begin{bmatrix} 1 & 1 & 1 \end{bmatrix}, \\
\begin{bmatrix} 2 & 2 & 2 \end{bmatrix}
\end{bmatrix}
\]
Which of the following will access 4 in this array?

A \ A(1,0)
B \ A[2,1]
C \ A(2,1)
D \ A(1)(0)
Question

\[A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \]

Which of the following will access 4 in this array?

A \(A(1,0) \)
B \(A[2,1] \)
C \(A(2,1) \) ★
D \(A(1)(0) \)
% basic mathematics:
A = (ones(3,3) + 1) / 2
B = sin(ones(3,3) * pi)
C = B' % transpose with '

% matrix multiplication:
D = eye(3,4) * ones(4,5) * pi
Which of the following will produce this array?

A 3*ones(2,2) - 2*eye(2,2)
B 2*ones(2,2) + eye(2,2)
C 3*ones(2,2) - eye(2,2)
D ones(2,2) + eye(2,2)
Which of the following will produce this array?

A 3*ones(2,2) - 2*eye(2,2)
B 2*ones(2,2) + eye(2,2)
C 3*ones(2,2) - eye(2,2)
D ones(2,2) + eye(2,2)*
% concatenating arrays
A = [eye(3,4), eye(3,5);
 ones(2,4), ones(2, 5)]
How can we produce this array?

A \[
\begin{bmatrix}
1 & 3 & 5 \\
2 & 4 & 6
\end{bmatrix}
\]

B \[
\begin{bmatrix}
1 & 2 \\
3 & 4 \\
5 & 6
\end{bmatrix}
\]

C \[
\begin{bmatrix}
1 & 3 & 5 \\
2 & 4 & 6
\end{bmatrix}
\]

D \[
\begin{bmatrix}
1 & 2 \\
3 & 4 \\
5 & 6
\end{bmatrix}
\]
How can we produce this array?

A \[
\begin{bmatrix}
1 & 3 & 5 \\
2 & 4 & 6
\end{bmatrix}
\]

B \[
\begin{bmatrix}
1 & 2 \\
3 & 4 \\
5 & 6
\end{bmatrix}
\]

C \[
\begin{bmatrix}
1 & 3 & 5 \\
2 & 4 & 6
\end{bmatrix}
\]

D \[
\begin{bmatrix}
1 & 2 \\
3 & 4 \\
5 & 6
\end{bmatrix}
\]

*
MATLAB uses `.m` files for two purposes: scripts and functions.

Comments are indicated as follows:

```matlab
% this is a comment
%
%{
  this is a block comment
%
```
Use the built-in editor to create these.
Make sure you have the correct working directory.
Scripts contain regular commands in order of execution.
Functions must be located in a file of the same name as the function.

```matlab
function [ output variables ] = function_name( % ... end
```

No explicit `return` statements—rely on values in output variable list.
\[T_F = \frac{180}{100} T_C + 32 \]

File TempC2F.m:

```matlab
function [ Tf ] = TempC2F( Tc )
    Tf = Tc * ( 180/100 ) + 32;
end
```
Strings

- Indicated with single quotes (only!).

  ```matlab
  s = 'XFEM';
  ```

- Print formatted strings with `sprintf`:

  ```matlab
  sprintf( '%f %f', sin(pi/3), cos(pi/4) );
  ```
“Matrix dimensions must agree.”

It is sometimes necessary to distinguish elementwise operations and matrix operations.

A = 2 * ones(2,2)
B = A .* eye(2,2)
C = A * eye(2,2)

These are distinguished by a dot . in front of the operator.

We won’t emphasize this but frequently you must distinguish.