Schedule

(The schedule of topics is tentative and subject to change.)

Date Topics Book Chapters Additional Reading Lecture Notes Scribe Notes
Pre-requisite Ch 2
08/29/2017 Overview of Syllabus, Intro to ML, Nearest neighbor classifiers Ch 1.1 - 1.42 Aug29Lecture.pdf 082917.1.pdf, 082917.2.pdf
08/31/2017 Generalization, Cross-validation Aug31Lecture.pdf 083117.1.pdf, 083117.2.pdf
09/05/2017 Bias/Variance Tradeoff, Bayes optimal Ch 6.4.4, 3.2, 3.5, Sep05Lecture.pdf 090517.1.pdf, 090517.2.pdf, 090517.3.pdf
09/07/2017 Overfitting, Probabilistic Models (Naive Bayes), Maximum Likelihood (linear / logistic regression) Ch 3.5, 8.2 Sep07Lecture.pdf, Sep07Addendum.pdf 090717.1.pdf, 090717.2.pdf, 090717.3.pdf
09/12/2017 Optimization: Convexity, Gradient Descent (Linear / Logistic) Ch 7.2, 7.3, 8.3.1 - 8.3.4 Sep12Lecture.pdf 091217.1.pdf, 091217.2.pdf
09/14/2017 Penalized maximum likelihood Ch 7.5. 8.3.6, Sep14Lecture.pdf 091417.1.pdf, 091417.2.pdf, 091417.3.pdf
09/19/2017 Variable Selection (Lasso) Ch 13.1, 13.2.3., 13.3 - 13.3.1, 13.4.1 Sep19Lecture.pdf 091917.1.pdf, 091917.2.pdf
09/21/2017 Decison Trees Ch 16.2 Sep21Lecture.pdf 092117.1.pdf, 092117.2.pdf, 092117.3.pdf
09/26/2017 Adaboost Ch 16.4 Sep26Lecture.pdf 092617.1.pdf, 092617.2.pdf, 092617.3.pdf
09/28/2017 Bagging (Random Forests), Surrogate Losses Ch 16.2.5 Breiman, Leo. "Bagging predictors." Machine learning 24.2 (1996): 123-140. Sep28Lecture.pdf 092817.1.pdf, 092817.2.pdf
10/03/2017 Kernel methods Ch 14.1, 14.2, 14.4, Oct03Lecture.pdf 100317.1.pdf, 100317.2.pdf, 100317.3.pdf
10/05/2017 Kernel Ridge Regression, SVM, Ch 14.43, 14.5, 14.7 Oct05Lecture.pdf 100517.1.pdf, 100517.2.pdf
10/10/2017 Representer Theorem Oct10Lecture.pdf 101017.1.pdf, 101017.2.pdf
10/12/2017 In Class EXAM #1
10/17/2017 Optimization: Online Learning, Stochastic Gradient Descent, Perceptron Ch 8.5 - 8.54 Oct17Lecture.pdf 101717.1.pdf, 101717.2.pdf, 101717.3.pdf
10/19/2017 Backpropagation Ch 16.5, 16.54 Oct19Lecture.pdf 101917.1.pdf, 101917.2.pdf
10/24/2017 MLP Oct24Lecture.pdf 102417.1.pdf, 102417.2.pdf
10/26/2017 MLP - Part II Ch 16.5.1 Oct26Lecture.pdf 102617.1.pdf, 102617.2.pdf
10/31/2017 Convolutional NN's, Project discussion Ch 16.5.2 Oct31Lecture.pdf 103117.1.pdf, 103117.2.pdf
11/02/2017 Convolutional NN's - 2, Recurrent Neural Networks Nov2Lecture.pdf 110217.1.pdf, 110217.2.pdf, 110217.3.pdf
11/07/2017 Exam review 110717.1.pdf, 110717.2.pdf
11/09/2017 In Class EXAM #2
11/14/2017 LSTM Nov14Lecture.pdf 111417.1.pdf, 111417.2.pdf, 111417.3.pdf
11/16/2017 Unsupervised Learning Nov16Lecture.pdf 111617.1.pdf, 111617.2.pdf, 111617.3.pdf
11/21/2017 FALL BREAK
11/23/2017 FALL BREAK
11/28/2017 Expectation Maximization, Mixture of Gaussians Nov28Lecture.pdf 112817.1.pdf, 112817.2.pdf
11/30/2017 Expectation Maximization, Mixture of Gaussians Nov30Lecture.pdf 113017.1.pdf, 113017.2.pdf
12/05/2017 Probabilistic PCA Dec05Lecture.pdf 120517.1.pdf, 120517.2.pdf
12/07/2017 Variational Autoencoders Dec07Lecture.pdf 120717.1.pdf
12/12/2017 Generative Adverserial Networks Dec12Lecture.pdf
FINAL PROJECT DUE, LITERATURE REVIEW DUE (FINALS DAY, DEC 19)